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Chapter 1

Introduction

This is a report for a project in the course ” CFD with OpenSource software”, given by Hakan Nilsson
in the autumn of 2013 at Chalmers University of Technology. The work is developed for OpenFOAM
2.2.x.

In this project, the k —w SST DES turbulence model [1] is going to be implemented and investi-
gated when applied to airfoil simulations. In addition to this, run-time mesh refinement features in
OpenFOAM 2.2.x. will be investigated and applied to the simulations using the dynamicRef ineFvMesh
class and the pimpleDyMFoam solver.

The k—w SST DES turbulence model is based upon the turbulence model k£ —w SST, which is an
eddy viscosity model developed for aeronautic flows with pressure induced separation and adverse
pressure gradient flows [1]. The model is then equipped with what is known as DES features,
where DES stands for Detached Eddy Simulations. The main goal of this approach is to reduce the
turbulent viscosity in regions where the mesh is fine enough to resolve large turbulent structures,
and hence do LES here. Therefore the model can be viewed as a trade off between LES and URANS,
with a computational cost in between the two.

In OpenFOAM, two implementations based upon the k —w SST model are found. The first is a
further developed version of the original £ — w SST model, in which additional changes have been
made for various purposes. This is a RAS turbulence model, i.e. designed to be used for RANS or
URANS simulations in which all of the turbulence is modeled. Next there is an implementation of
the k — w SST SAS model presented in [2], where SAS stands for Scale Adaptive Simulation. It is
based upon the original £ —w SST model in which SAS features have been introduced in an extra
source term in the w equation. Since it is only different from the & —w SST DES model with respect
to one source term, see [1] and [2], it will serve as the base for the DES implementation.

Since DES models are designed to resolve turbulence where the grid is fine enough, this allows
for the user to control where turbulence is to be resolved and when it is not. One way to do this is
to refine the mesh run-time in desired regions until the model starts resolving turbulence in these
regions. This is the second part of the project.

A test case is set to be cambered NACA four digit airfoil in 2 and 3D. The surface shape is
generated according to the NACA four digit standard, and a Fortran routine found at [3] is used to
then create a blockMesh dictionary. Since three dimensional simulations are very computer intensive
when finer grids are employed, it is mainly the focus to run the case in 2D during development and
validation.



Chapter 2

Theory

In this chapter the £ — w SST DES turbulence model which will be implemented in OpenFOAM is
presented. The boundary conditions employed will also be presented as well as a short overview of
how the mesh refinement will be controlled.

2.1 The k —w SST DES turbulence model

2.1.1 Short background

The k£ — w SST-DES model is a DES modification of the RANS model & — w SST. The standard
SST model is a mix between the k — ¢ and the & —w model, in which the former is used in the outer
part of the boundary layer as well as outside of it, and the latter in the inner part of the boundary
layer [1]. The transport equation for ¢ in the k — & model is however rewritten as an equation for w,
giving a similar equation to the original w equation but with some additional terms and constants.
This does however allow the computer to only solve for one pair of transport equations and the
switching between the two formulations is done by so called blending functions. The advantage of
using different models in different regions is that the two models have their individual strengths
and weaknesses. The & — w model is a low Reynolds number model, which means that it does not
need extra damping functions to ensure correct behavior close to walls. On the other hand the w
equation shows great sensitivity to free stream values of w [1]. These two features are not present
in the £ — ¢ model, i.e. it is not a low Reynolds number model and neither is it sensitive to the free
stream values of k or €.

Apart from this combination of features, the kK —w SST model has been equipped with additional
features over its two base models. The first feature is a shear stress limiter (reducing 1), which
ensures that the turbulent shear stress does not become too large in adverse pressure gradient regions,
typically found on the top of an airfoil. Also a production limiter is applied on the production term
in the k equation in order to prevent build up of turbulence in stagnant regions [1].

The model has finally been equipped with DES features, which aims at reducing the turbulent
viscosity in regions where the mesh is sufficiently fine. This means that the model effectively transfers
from RANS mode to LES mode in these regions, and the turbulent viscosity should be viewed as a
sub grid scale viscosity instead.

Since the introduction of the k —w SST model it has undergone some changes in its formulation.
The aim of the following section is therefore both to give an understanding of how the model works
as well as to show exactly which model that will be implemented in OpenFOAM.

2.1.2 Governing transport equations

The definition of w in terms of k£ and € reads
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Here C, is the constant present in the expression for the turbulent viscosity in the & — e model,
and it is equal to 0.09. This definition is used to rewrite the transport equation for ¢ as a transport
equation for w, a derivation that will not be presented here.

The modeled transport equation for the turbulent kinetic energy, k, used in k — w SST DES
model reads, see [1], [2]

ok 8(ﬂlk) 5 0 v\ Ok *
5 + oz, P+ B, KV%— Uk) (*):cj — B*kwlpEs. (2.2)

It is the modified production P as well as the term Fpgg that differ this transport equation from
those found in the base models. The bar over the velocity is indicating that the velocity field is
filtered in the sense that not all turbulent fluctuations are resolved. In URANS regions, this would
correspond to a time filter, and in LES regions a space filter. This is however just a formality, since
no actual filtering is done in the solver. Next the transport equation for w reads [1], [2]
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The last cross diffusion term stems from the & — ¢ model when formulated as a kK — w model and
hence should only be active away from the wall. Now, to begin with, the production term in the w
equation is evaluated as [1]

(2.3)

P, = aS?, (2.4)
where S = /25;;5;; is the invariant measure of the strain rate [1] and
1 [/ 0u, 8ﬂj
5=~ , 2.5
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is the strain rate tensor of the filtered velocity field. Next we have the first blending function, F'1,
which is evaluated as [1], [2]

(2.6)
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Its purpose is to switch the SST model between the k —w and k — e formulation by changing between
the value 1 close to the wall, to 0 in the outer part of the boundary layer as well as outside of it. It
appears in the w equation (2.3) in the last term, and hence can be seen to activate this term when
it goes to 0, giving the k — ¢ formulation instead. The model constants a, 3, oy and o, are in fact
also blended between the two formulations to give model constants applicable for the formulation
used in a certain region. This is done according to

¢ = Figr + (1 — F1)g, (2.7)
when ¢; denotes either «; or ;, or according to

1 1 1

=R —+(1-F)—, 2.8
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when 9, denotes either oy, or ;. The values of the constants are taken from [1]

ar =5/9, ay =0.44,
fr =3/40, B2 =0.0828,
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These constants are in fact derived from the original constants of the k — ¢ and k — w models.
Furthermore, CD,, stems from the cross diffusion term in (2.3) and is defined by, see [1]

L Ok 0w 10—10>. (2.9)

CD, =max | 20,0— = ,
v ( “2, Ox; Ox;
The SST model also features a shear stress limiter, which will switch from a eddy viscosity model to
the Johnson King model in regions where the shear stress becomes too large, i.e. adverse pressure
gradient flow. It is defined as [1]

alk
= - 2.10
vt max(ajw, SFy)’ (2.10)
where a1 = /f* and F» is another blending function that ensures that the Johnson King model
only can be active in the boundary layer. It is defined as

2vVk 500
F, = tanh(n?), nzmax( vk V).
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It should be mentioned that throughout, y denotes the distance to the closest wall. The production
of turbulent kinetic energy features a limiter and is defined as [1]

(2.11)
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It now remains to show how the DES features are incorporated. In the dissipation term of the k
equation, the function Fpgg is included. In the original £ — w SST model the dissipation is not
multiplied by this term, which reads [1]

CppsA’

Where L; = Vk/(f*w) is a turbulent length scale, A = max(Az;, Azy, Axs) is the largest side of
a cell at the present point in the grid and Cpgs = 0.61. When the local grid is fine enough in all
directions, compared to the turbulent length scale, the Fpgpg term grows larger than 1. This will
in turn reduce k, which reduces v, see (2.10), and hence allows the solution to go unsteady. Thus
in regions where the mesh is fine enough to resolve turbulence, the model will reduce the amount
of modeled turbulent shear stress and allow the region to be treated with LES. There is however a
problem with this formulation when it comes to near wall regions. Since the grid generally is fine
close to walls, it could happen that the solution is triggered to go unsteady here. This is generally
a bad result since near wall turbulent structures are very small and require a very fine grid to be
resolved properly with LES. These requirements might not be satisfied by the mesh and hence a
poorly resolved LES simulation close to the walls might be the result. Therefore the model is also
presented with DDES (Delayed Detached Eddy Simulations) features, which protects it from going
unsteady near the wall. In this case the Fpgg term is modified according to

Fpps = max ( Lt 1) (2.13)

Ly
F g:max<1—Fs,1> 2.14
DDE Coms A( ) ( )
in which Fys is a blending function, chosen as either Fy or F;. As can be seen, the blending function
will ensure that the term is reduced in the boundary layer, since the blending function becomes close
to 1 here.
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2.2 Boundary conditions

Indeed, for any CFD simulation, the boundary treatment is important in order to get accurate and
reliable results. As mentioned earlier, the & — w SST model is a blend of the k — ¢ and the &k — w
with some additional features. One reason for this is that the kK —w model shows great sensitivity to
the free stream values of w whereas it behaves much better in the near wall regions than the k — ¢
model [1]. In addition to this, advanced wall treatment for w has also been developed in order to
make it less sensitive to near wall grid resolution, see [1] and [4].

To investigate how the new turbulence model performs, a test case was chosen to be airfoil
simulations. The boundary conditions for this type of simulation can vary dependent on under
which setting the airfoil is simulated. For example if it is present in a turbulent flow field or not
affects the boundary conditions on k and w and also, if large turbulent fluctuations approach the
airfoil, the velocity as well. Below the boundary conditions applied in OpenFOAM are presented
and discussed in connection to a typical computational domain as presented in Figure 2.1.

L O Y

(b) Wing Patch.

Figure 2.1: Computational domain including patch names for NACA 4412 Airfoil.

The following table lists the boundary conditions applied in a two dimensional case.
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Table 2.1: Boundary conditions for the k¥ —w SST DES model.

Field Patch Type Specifications

U Inlet freestream freestreamValue uniform (-1 0 0)
Outlet | freestream freestreamValue uniform (-1 0 0)
Top freestream freestreamValue uniform (-1 0 0)
Bottom | freestream freestreamValue uniform (-1 0 0)
Wing fixedValue uniform (0 0 0)

p Inlet freestreamPressure
Outlet | freestreamPressure
Top freestreamPressure

Bottom | freestreamPressure
Wing zeroGradient

k Inlet fixedValue uniform le-6
Outlet zeroGradient
Top fixedValue uniform le-6
Bottom | fixedValue uniform le-6
Wing fixedValue uniform le-10

w Inlet fixedValue uniform 1
Outlet zeroGradient
Top fixedValue uniform 1
Bottom | fixedValue uniform 1
Wing omegaWallFunction | uniform le3

vy [Vsgs | Inlet calculated uniform 0
Outlet calculated uniform 0
Top calculated uniform 0
Bottom | calculated uniform 0
Wing fixedValue uniform 0

In general, the boundary conditions are selected to simulate a case where the airfoil is traveling
through a completely still fluid where no turbulence is present. One specific thing that is of great
importance to achieve this is to set k£ and w at the boundary such that the turbulent viscosity
becomes small in comparison to the kinematic one. This is achieved by noting that far away from
walls, the turbulent viscosity is given by k/w and hence the relation between the two quantities can
be chosen such that v;/v is small. In this case v;/v = 0.1. Below follows a short description of the
boundary conditions employed for the different quantities.

Velocity, U To begin with, a no-slip condition is applied to the airfoil, which is realized with
the fixedValue boundary condition. At the other boundaries, the freestream boundary condition is
applied. It is applicable at boundaries of type patch or wall and is a derived boundary condition
of type inletOutlet. This means that for every face of the patch, the boundary condition will be
assigned dependent on the local flux. If the flux goes inside the domain, it will be assigned a fixed
value and if it goes out it will be assigned a zero gradient condition. This is typically what we want
to achieve in this case.

Pressure, p The pressure boundary condition is of type zeroGradient on the wing. The physical
motivation for this is that there is no flow through the wall and hence no pressure gradient should
exist normal to the wall trying to drive the fluid through the wall. On the other boundaries,
the boundary condition is of type freestreamPressure. The first thing to be noted here is that
this boundary condition must be used together with the freestream boundary condition for U. It
is applicable to boundaries of type patch or wall, and is a derived boundary condition of type
zeroGradient. It sets what is known as a free-stream condition on the pressure. This means that it
is a zero gradient condition that constrains the flux across the boundary based on the free stream
velocity (U).
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Turbulent kinetic energy, k The turbulent kinetic energy is prescribed by setting it to a small
value on the wing. What small means is really not well defined, so therefore it is good practice
to simply prescribe it arbitrarily small and check that the simulations look reasonable. In reality,
k = 0 on the wing since no turbulent fluctuations are present at the wing. However some turbulence
models include division of k£ in the transport equations and therefore it is better practice to choose
k # 0. Note that no wall function approach is used, and hence the first internal grid point must
be located at y™ < 11.63 [5]. On the inlet, top and bottom, it has simply been prescribed to some
arbitrary small number such that v, /v = 0.1. A zero gradient condition is used at the outlet simply
to not disturb the wake forming behind the airfoil.

Turbulent frequency, w On the wing, a special boundary condition has been applied to w
through omegaWallFunciton. The reason to use special wall functions is that w — 0o as y — 0, and
hence it can not simply be specified at the wall. Instead it is set in the first internal node using a
special formula. A version of this type of wall treatment is presented in [4], although it needs to be
stated that this is not the exact same approach that is taken in OpenFOAM. The method applied
in OpenFOAM is essentially a blend between the usual low-Re formulation and a wall function
treatment dependent on if the grid is too coarse close to the wall. In short, w is set in the first
internal node as a squared average between the low-Re formulation and wall function formulation

according to
w= \/ w%’is + w120g' (215)

Here wvis and wiog are computed according to

6
Wyie 617;2 (2.16)
vk (2.17)

wlog = Wﬁy .

This allows for a smooth mixing, that automatically sets a suitable value for w in the first node
dependent on its location. At the inlet, top and bottom, the values are prescribed in order for the
turbulent /sub grid scale viscosity to be small in comparison to the kinematic viscosity and hence
simulate little presence of turbulence.

Turbulent viscosity/Sub grid scale viscosity, v4/vs;s On the wing, the turbulence goes to
zero and hence any shear stresses caused by turbulence should be zero here as well. Therefore,
the turbulent or sub grid scale, viscosity is set to zero at the wing. For the other boundaries,
the calculated boundary condition is applied. This means that no special boundary condition is
assigned to the turbulent viscosity, but it is assumed to have been assigned using other fields. This
is appropriate since we want k and w to determine v, /v,4,, but still some boundary condition needs
to be applied since the turbulent viscosity is needed in the 0/ directory.

2.3 Applying run-time mesh refinement

In this project, mesh refinement is also going to be used. Since the mesh refinement should happen
automatically at run-time, some quantity needs to exist that indicates if the mesh should be refined
in a certain location. One way to do this, which is implemented in OpenFOAM, is to store a value
for every cell and then refine a certain cell if the value lies within a specific interval. The limits and
which type of scalar field that is used as an indicator is then up to the user to decide.

In this project, the aim is to adapt the mesh such that turbulence is resolved. This means
that if turbulence is resolved, the mesh does not need to be refined. However in regions where the
turbulence exists, but its length scales are smaller than the local grid size, the mesh should be refined
in order to resolve turbulence here. The natural way to achieve this is to work with the Fpgg or
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Fppes term, see (2.13) and (2.14). If this term is larger than 1, the DES effect has been enabled
and the model should hopefully start to resolve turbulence in that region. On the other hand if it is
equal to 1, the model operates in RANS mode in that region and no turbulence should be resolved.
For the DES and DDES model, the ratio of the turbulent to the grid length scale is therefore defined
as

Vi

L —_— 2.1
DES CDESB*(UA’ ( 8)
VEk
L = — (1 — Fy). 2.1
DDES CDESB*WA( S) ( 9)

Since these are the terms within the max operator in (2.13) and (2.14) respectively, it holds that
the DES features are active if Fppgs or Fppgs are greater than 1.

To select the regions in which mesh refinement should be applied, this term is therefore going to
be used as an indicator. If it is greater than some «,, it is sufficiently large and no mesh refinement
is needed. On the other hand if it is less than some constant a; close to 0, we have a region in which
very little turbulence is present and mesh refinement in unnecessary. If it however lies in between
these two limits, we have a region in which turbulence is present but the mesh is not fine enough, or
just about fine enough, to resolve turbulence. Here mesh refinement is appropriate. Hence a good
indicator of mesh refinement is that oy < Fpps < ay or oy < Fppes < a, depending on the model
used. The lower and upper limit must be tuned by repeated simulations and evaluation of results.

10
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Chapter 3

The OpenFOAM implementation

In this chapter the implementation of a LES-class turbulence model, namely the k — w SST SAS
model, as well as the dynamic mesh features of the pimpleDyMFoam solver are described. The reason
that the K — w SST SAS model will be described is that it will later be modified into the k — w
SST DES model as mentioned in the introduction. The discussion does mainly regard high level
programming and technical details on a deeper level are left out. The aim is to give a general
understanding of the implementation in order to be able to modify the turbulence model as well as
using the dynamic mesh features of the solver.

3.1 k—w SST SAS model

The declaration and definition files of the & — w SST SAS turbulence model are found at

$FOAM_SRC/turbulenceModels/incompressible/LES/kOmegaSSTSAS/

3.1.1 kOmegaSSTSAS.H

The declaration file kOmegaSSTSAS.H is presented in parts below. It begins by including some
declaration files before the class declaration starts, as seen below.

#ifndef kOmegaSSTSAS_H
#define kOmegaSSTSAS_H

#tinclude "LESModel.H"
#include "volFields.H"
#include "wallDist.H"

J/ % % %k % % >k % x % * *x % * % % % % % * * *x * * *x % * % *x *x % x x //

namespace Foam

{

namespace incompressible
{

namespace LESModels

11
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class kOmegaSSTSAS
public LESModel
// Private Member Functions

//- Update sub-grid scale fields
void updateSubGridScaleFields(const volScalarField& D);

// Disallow default bitwise copy construct and assignment
kOmegaSSTSAS (const kOmegaSSTSAS&) ;
kOmegaSSTSAS& operator=(const kOmegaSSTSAS&);
protected:
// Protected data

// Model constants

dimensionedScalar alphaKl_;
dimensionedScalar alphaK2_;

dimensionedScalar alphaOmegal_;
dimensionedScalar alphaOmega2_;

Listing 3.1: file: kOmegaSSTSAS.H

To save some space, a set of model constant declarations have been left out. After them, the
declaration of the fields the model uses and calculates follows.

// Fields

volScalarField k_;
volScalarField omega_;
volScalarField nuSgs_;

Listing 3.2: file: kOmegaSSTSAS.H

To begin with there is the declaration files. LESModel.H is included since this turbulence model
inherits the LESModel class and hence is a sub class to this class. Furthermore, wallDist.H is
included to enable the calculation of distance to walls, as the name indicates. It uses the utility
patchDist, but only calculates the distance to boundaries of type wall, not a general patch. This
allows the user to select which boundaries that the solver should actually interpret as physical walls
and not as general boundaries such as an inlet or cyclic patch. For more details on wallDist and
patchDist, please refer to the installation where they are found at

$FOAM_SRC/finiteVolume/fvMesh/wallDist/

After the declaration files, the namespace is set for this turbulence model, and as seen all declarations
and so forth will be done in namespace Foam: : incompressible: :LESModel. Hence functions used
in this turbulence model will be those developed for incompressible LES models.

Next, starting on line 76. the class is declared, and as seen it also inherits the attributes of the
LESModel class and thus becomes a sub class to LESModel. Next follows a set of declarations, first
of updateSubgridScaleFields, which is a function updating the turbulent/subgrid scale viscosity

12
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using call-by-reference. Since it does not say public: or protected: above we also know that this
is a private member function.

After this a set of member constants and member fields are declared. They are set as pro-
tected, meaning that they are visible only within this class and classes that inherit from the class
kOmegaSSTSAS as well as friend functions to this class. Also when run-time mesh refinement is used,
a separate field depicting where mesh refinement should occur is needed as well. For this purpose
a new volScalarField will have to be added as well. The model constants that the SAS and DES
implementation share have the same values in both models. The only difference is that the models
use some specific constants in their respective source terms. It should also be mentioned that the
names used in this implementation differ to some extent from the names found in [2]. When describ-
ing how to do the DES implementation, the corresponding names in literature and implementation
will be presented to avoid confusion.

Next the protected member functions are declared, the first one are shown below

// Protected Member Functions

tmp<volScalarField> Lvk2

(
const volScalarField& S2
) const;

tmp<volScalarField> F1(const volScalarField& CDkOmega) const;
tmp<volScalarField> F2() const;

tmp<volScalarField> blend

(
const volScalarField& F1,
const dimensionedScalar& psil,
const dimensionedScalar& psi2
) const
{
return Fl*(psil - psi2) + psi2;
}
tmp<volScalarField> alphak
(
const volScalarField& F1
) const
{
return blend(F1, alphaKl_, alphakK2_);
}

Listing 3.3: file: kOmegaSSTSAS.H

These protected functions will only be visible in the same way as for the protected member data
shown above. Here, typically, different functions needed to evaluate complex terms within the
transport equations as well as blending functions used to shift between the model formulations are
declared. It is generally more convenient to define functions returning these terms, than to state
them explicitly when setting up and discretizing the transport equations. When modifying the
turbulence model, the Fpgs or Fppgrs should also be declared here. It is worth noting that all
these functions return volScalarFields (related to the mesh), but they are also of class tmp. The
wrapper class tmp is used for large objects (memory wise) and allows them to be returned from the
function without being copied. It also allows the memory occupied by this object to be cleared as
soon as it is not used anymore. In short, it is the function type of choice when calculating and
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returning large fields that will only be used temporarily to compute some term or quantity in the
transport equations. Furthermore, the keyword const is predominantly used throughout member
function declarations above. The second const, used after defining which parameters to take in,
says that this function may not modify the original objects it takes in. The first ones says that the
object sent in is of type constant.

The function blend is also defined here, not just declared. It is the implementation of (2.7) and
(2.8) and is used to blend the model constants. The reason to why only one type of blend function
is needed is that the values of 1/0y; and 1/0,,; are used instead of o, and o,,;. An example of how
blend is applied is seen in the next member function, where 1/0y is computed using the blending
between the k — w and the k — € values. As can be seen the model constants do not have the same
name in the implementation as in the papers it is based upon.

Finally some public member functions are declared, the first piece of the code doing this is shown
below

// Member Functions

//- Return SGS kinetic energy
virtual tmp<volScalarField> k() const
{

return k_;

3

//- Return omega
virtual tmp<volScalarField> omega() const
{

return omega_;

}

Listing 3.4: file: kOmegaSSTSAS.H

The public member functions are visible outside of the class, and thus are typically functions return-
ing fields that are of interest outside the turbulence model, such as k or w. They are also virtual,
meaning that their function are determined run-time.

3.1.2 kOmegaSSTSAS.C

The main definition file is presented in parts below. First comes some include files as well as the
definition of the correct namespace and and the protected member functions

#include "kOmegaSSTSAS.H"
#include "addToRunTimeSelectionTable.H"
#include "wallDist.H"

J/ % % %k % % %k % % % * % % * % % % % % * * % % * X % * % % *x % x x //

namespace Foam

{

namespace incompressible

{
namespace LESModels

{

// % % x % % x % *x *x % *x Static Data Members * * * % x *x % x *x *x x //

14
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41 defineTypeNameAndDebug (kOmegaSSTSAS, 0);

42 addToRunTimeSelectionTable (LESModel, kOmegaSSTSAS, dictionary);

43

44 // * * *x x * *x *x *x * Protected Member Functions * * * *x *x * *x x *x //
45

46 void kOmegaSSTSAS::updateSubGridScaleFields (const volScalarField& S2)
47 A

48 nuSgs_ == al_xk_/max(al_*omega_, F2()*xsqrt(S2));
49 nuSgs_.correctBoundaryConditions ();
50 %

Listing 3.5: file: kOmegaSSTSAS.C

To begin with, the previously considered declaration files kOmegaSSTSAS.H and wallDist.H are
included. In this part we will see the use of the wall distance when it comes to calculating the
different terms in the transport equations.

The first protected member function is the one that computes the turbulent, or sub grid scale
viscosity, called updateSubGridScaleFields. As can be noted, it is the exact same expression as
(2.10) assuming that what is called S2 is equal to S? = 25;75;;. At line 348 this field is computed as

348 volScalarField S2(2.0*magSqr (symm(gradU())));

Listing 3.6: file: kOmegaSSTSAS.C

The programmers guide [6], section 1.4.1 gives, since gradU() simply gives the gradient of the vector
field, that

1
symm(gradU()) = 3 (VU + (VU)T).

Furthermore, section 1.3.6 and 1.4.1 of the programmers guide gives that the magSqr operation
performs a double inner product to a second order tensor according to

magSqr(T) =T : T.

From the programmers guide, section 1.3.2, we have that T : T = T;;7T;;, where T}; are the compo-
nents of the second order tensor. Hence, the implementation computes S2 as

2 6xj 6331‘ 2 (9.’13]' 8.131

= 2§ij§ij~

52

The second equality comes from definition (2.5). The conclusion is that the implementation uses
the same formula for the turbulent/sub grid scale viscosity given in (2.10).
Next the two blending functions F; and F5 are defined

52
53 tmp<volScalarField> kOmegaSSTSAS::F1l(const volScalarField& CDkOmega) const
54 {

95 tmp<volScalarField> CDkOmegaPlus = max

56 (

57 CDkOmega,

58 dimensionedScalar("1.0e-10", dimless/sqr(dimTime), 1.0e-10)
59 )

60

61 tmp<volScalarField> argl = min

62 (

63 min

15
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64 (

65 max

66 (

67 (scalar (1)/betaStar_)*sqrt(k_)/(omega_x*xy_),
68 scalar (500)*nu()/(sqr(y_)*omega_)

69 ),

70 (4+*alphaOmega2_)*k_/(CDkOmegaPlus*sqr(y_))
71 ),

72 scalar (10)

73 )

74

75 return tanh (pow4d (argl));

76}

7

78

79 tmp<volScalarField> kOmegaSSTSAS::F2() const

80 {

81 tmp<volScalarField> arg2 = min

82 (

83 max

84 (

85 (scalar (2)/betaStar_)*sqrt(k_)/(omega_xy_),
86 scalar (500)*nu()/(sqr(y_)*omega_)

87 ),

88 scalar (100)

89 )

90

91 return tanh(sqr(arg2));

92 }

Listing 3.7: file: kOmegaSSTSAS.C

The implementation of these two blending functions differs slightly from formulas (2.6) and (2.11).
In both cases there is an extra min(a,b) operation being performed in order to evaluate £ and
7 (denoted argl and arg2) which then will go into the tanh function. For the case of Fi, the
implementation instead computes the quantity tanh(£%), where & = min(¢,10). The reason why is
simply that tanh(10%) is so close to 1, that any larger value of ¢ than 10 simply does not affect
the value of tanh to anything but a very small extent. Hence the implementation avoids forcing
OpenFOAM to calculate tanh of some very large value of £*, hopefully giving a faster and/or more
stable code. The analogous approach is used for F5.

Keeping this small change in mind, a look at the implementation reveals that it would be the
same as the formulas (2.6) and (2.11) if it holds that

DO 9 1 9k Ow
mega = 20,0 — —— )
& 20 Ox; 0x;

At line 354 this term is calculated according to

354 volScalarField CDkOmega ((2.0*alphaOmega2_)*(gradK & gradOmega)/omega_);

Listing 3.8: file: kOmegaSSTSAS.C

The & is an inner product in OpenFOAM, which for the vectors gradK and gradOmega gives the
formula
Ok Ow

Vk-Vw =
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Hence the implementation uses the desired formula for the cross diffusion term as given in (2.9).
The rest of the implemented protected member functions are specific to the SAS model. When
adding the new Fpgg or Fppgs term later on, it will be convenient to include it as a function like
F1. This will make it easy to modify and view its implementation as well as switching between the
DES and DDES formulation. Later on a volScalarField can then be created using this function,
prior to setting up and solving the discrete system of equations.
Next comes the construction of the object kOmegaSSTSAS

// % % x % % x * % *x % % *x x Constructors * *x * % *x x *x *x x *x *x x //

kOmegaSSTSAS::kOmegaSSTSAS

(
const volVectorField& U,
const surfaceScalarField& phi,
transportModel& tramsport,
const word& turbulenceModelName,
const word& modelName

)

LESModel (modelName, U, phi, transport, turbulenceModelName),

alphakKi1_
(
dimensioned<scalar>::lookupOrAddToDict
(
"alphaK1l",
coeffDict_,
0.85034
)
),
alphaK2_
(
dimensioned<scalar>::lookupOrAddToDict
(
"alphaK2",
coeffDict_,
1.0
)
),

Listing 3.9: file: kOmegaSSTSAS.C

To save some space, not all definitions of protected member constants have been included. They are
followed by the fields used by the turbulence model as follows.

k_
(
IOobject
(
llkll s
runTime_.timeName (),
mesh_,

I0object ::MUST_READ,
I0object :: AUTO_WRITE
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),
mesh_
),
omega_
(
I0object
(
"omega",
runTime_.timeName (),
mesh_,
I0object : : MUST_READ,
I0object :: AUTO_WRITE
),
mesh_
),
nuSgs_
(
IOobject
(
"nuSgs",
runTime_.timeName (),
mesh_,
I0object : : MUST_READ,
I0object:: AUTO_WRITE
),
mesh_
)

{
omegaMin_.readIfPresent (xthis);
bound (k_, kMin_);
bound (omega_, omegaMin_);
updateSubGridScaleFields (2.0*magSqr (symm(fvc::grad(U))));
printCoeffs ();

}

Listing 3.10: file: kOmegaSSTSAS.C

After the appropriate parameters have been taken in to construct the object kOmegaSSTSAS, the con-
struction begins by directly calling the constructor of the LESModel class. After this all model con-
stants are read from a sub dictionary in the LESProperties dictionary called kOmegaSSTSASCoeffs
or defined if not present. Also all the relevant fields, such as k and w are read. Since the DES
model includes a new model constant, it is important to include it here as well. Also, in the case of
run-time mesh refinement, a new field is needed which will be computed by the turbulence model.
Thus it must also be read here in order to be computed. The maybe most important thing in the
body of the constructor is the call for the calculation of the turbulent viscosity through the function
updateSubGridScaleFields

The final part of the turbulence model includes solving for the turbulent quantities £ and w to-
gether with the calculation of 1;/v,ys. This is done in the virtual void function correct, which
is a public member function of the class kOmegaSSTSAS as can be seen in the declaration file
kOmegaSSTSAS.H. Hence, since it is a virtual function, it will override the function correct in
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the LESModel class, which the kOmegaSSTSAS class inherited. This allows OpenFOAM to select
which turbulence model that is used run-time, since the function calculating the turbulent viscosity
is overridden by the chosen turbulence model. It starts by solving the equation for k

336

337 // * *x *x % %x *x % x *x *x x *x Member Functions * % X %k *x X *x *x x x *x //
338

339 void kOmegaSSTSAS::correct(const tmp<volTensorField>& gradU)

340 {

341 LESModel ::correct (gradU);

342

343 if (mesh_.changing())

344 {

345 y_.correct ();

346 }

347

348 volScalarField S2(2.0*magSqr (symm(gradU())));
349 gradU.clear ();

350

351 volVectorField gradK(fvc::grad(k_));

352 volVectorField gradOmega(fvc::grad(omega_));
353 volScalarField L(sqrt(k_)/(pow025(Cmu_)*omega_));
354 volScalarField CDkOmega ((2.0*alphaOmega2_)*(gradK & gradOmega)/omega_);
355 volScalarField F1(this->F1(CDkOmega));

356 volScalarField G(GName (), nuSgs_%*S52);

357

358 // Turbulent kinetic energy equation

359 {

360 fvScalarMatrix kEqn

361 (

362 fvm::ddt (k_)

363 + fvm::div(phi (), k_)

364 - fvm::laplacian(DKEff (F1), k_)

365 ==

366 min (G, cl_*xbetaStar_xk_*omega_)

367 - fvm::Sp(betaStar_x*omega_, k_)

368 )

369

370 kEqn.relax () ;

371 kEqn.solve () ;

372 }

373 bound (k_, kMin_);

374

375 tmp<volScalarField> grad_omega_k = max

376 (

377 magSqr (gradOmega)/sqr (omega_),

378 magSqr (gradK)/sqr (k_)

379 )

Listing 3.11: file: kOmegaSSTSAS.C

What can first be noted is that support for a changing mesh is included, in which case the wall
distance will be corrected by letting the function correct() operate on the field. After this a set
of fields necessary to set up the discrete system of equations are calculated. Since the names of
the different operations are very logical in OpenFOAM, it is not necessary to explain all of these
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fields. The fields 82 and CDkOmega have already been considered, and the only one that raises some
questions is the field called G. This is the production term Py without the limiter applied to it, since
according to the implementation we have

G = 1S
= 14255
= 2145 (gij + Qlj)

_ O CANE: o N Ot L1 du;  duy
- 81‘]' 81‘1 2 8.13j 8331' 2 81‘]' 8$i

B o, L o,
- al‘j 83% 8xj

- P,

Here it was used that the product of the anti symmetric tensor ;; and the symmetric tensor 5;; is
Zero since Qij = ,Qﬂ_

When implementing the DES model it is the dissipation in the k equation that will be modified
by multiplying it with an extra term, namely Fpgg or Fppgs. This field must also be calculated
in advance using the function describing it.

Turning to the creation of the discrete system of equations, the transport equation for k is set
up in accordance with (2.2) apart from the fact that no DES term is included. The production term
can be seen to include the limiter, as written in (2.12) since c1_ = 10. Further the dissipation term
comes in by using the operation fvm::Sp(betaStar_*omega_, k_). Indeed the dissipation term
could simply have been added by writing betaStar_*omega_*k_, in which case it would have been
implemented explicitly. The thing is though that the entire dissipation term always is negative due
to the minus sign, and the fact that k, w and Sx are positive. To improve convergence and stability
it is better to treat negative sources implicitly, which is achieved using the syntax Sp(). The answer
to why is because when a source term is treated explicitly, it is included in the load vector b in the
discretisized system of equations Ak = b, where k is a vector including the nodal values of k. Hence
it can prior to convergence cause the elements in k to go negative, which is bad when considering
that & > 0 by definition. However, when it is treated implicitly, it is instead included in the diagonal
of A instead. Since it was negative on the right hand side, it will instead give a positive contribution
on the left hand side, making the matrix A more diagonally dominant.

After the k equation has been solved, the w equation is set up and solved according to

// Turbulent frequency equation
{
fvScalarMatrix omegaEqn
(
fvm::ddt (omega_)
+ fvm::div(phi(), omega_)
- fvm::laplacian(DomegaEff (F1), omega_)

gamma (F1)*S2
- fvm::Sp(beta(Fl)*omega_, omega_)

- fvm::SuSp // cross diffusion term
(
(F1 - scalar(1))*CDkOmega/omega_,
omega_
)
+ FSAS_
*max
(
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dimensionedScalar ("zero",dimensionSet (0, O, 0),
zetaTilda2_xkappa_*S2*sqr (L/Lvk2(S2))
- 2.0/alphaPhi_xk_*xgrad_omega_k

)

-2, 0,

)

omegaEqn.relax ();
omegaEqn.solve ();
}
bound (omega_, omegaMin_);
updateSubGridScaleFields (S2);
}

Listing 3.12: file: kOmegaSSTSAS.C

The implementation is the same as presented in (2.3) apart from the so called SAS term, which
of course must be removed when implementing the DES model. Another interesting thing that
can be noted here is the implementation of the cross diffusion term according to fvm: :SuSp(F1 -
scalar (1) *CDkOmega/omega_, omega_). The use of SuSp(a,b) allows for a flexible treatment of
the source term with respect to the sign of a. If it is negative, the source term is treated implicitly,
and if it is positive it will be treated explicitly. Explicit treatment is favorable if the source term is
positive and hence it will be done if possible.

Finally it can be seen that the turbulent viscosity is updated, and hence the purpose of the
correct function is achieved in a sense. When a new field for mesh refinement is added, it will be
calculated here as well, using the most recent values of £ and w.

The final thing that should be reviewed in order to be able to implement the DES model is the
name and the values of the model constants. As it turns out, their names in the implementation do
not always correspond to the literature. The following table presents the names and values used in
the implementation, together with the corresponding names used in the literature.

Table 3.1: Model constant names used in implementation and corresponding names in theory.

Theory | Implementation | Value in implementation
o gammal_ 0.5532
2 gamma?2_ 0.4403
51 betal_ 0.075
Ba beta2_ 0.0828
1/ok1 alphaK1_ 0.85034
1/oks alphakK2_ 1.0
1/0w1 alphaOmegal_ 0.5
1/0ue | alphaOmega2_ 0.85616
B* betaStar_ 0.09

al al_ 0.31
Cpgs CDES_ 0.61

3.2 pimpleDyMFoam

The solver pimpleDyMFoam is a modification of the pimpleFoam solver that supports meshes of class
dynamicFvMesh. The class dynamicFvMesh is a base class for meshes that can move and/or change
topology. The solver pimpleFoam is a transient solver developed for incompressible flows, and is
based on the PISO and SIMPLE algorithms. It is in addition to the pisoFoam solver, which is based
on the PISO algorithm, developed to be able to handle larger time steps. This section will not focus
on how the actual transport equations are solved using the merged PISO-SIMPLE algorithm, but on
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how the dynamic meshes are treated within the solver. There are a number of different sub classes
to the class dynamicFvMesh, based upon what the mesh should be able to do. Since pimpleDyMFoam
primarily is developed for moving meshes, special attention will also be paid towards how this solver
will treat a refined mesh and if there are missing features left to be implemented for this purpose.
The pimpleDyMFoam solver is located at

$FOAM_APP/applications/solvers/incompressible/pimpleFoam/\
pimpleDyMFoam/

Furthermore, for reference, the pimpleFoam solver are located at

$FOAM_APP/applications/solvers/incompressible/pimpleFoam/

3.2.1 Comparison between pimpleFoam.C and pimpleDyMFoam.C

To begin with the differences in the definition files of the original pimpleFoam solver and the
pimpleDyMFoam solver will be presented. The pimple-loop, in which both solvers solve the trans-
port equations, are essentially equal. Some differences are present to handle mesh movement in the
pimpleDyMFoam case but otherwise they are the same. The major differences are instead present
before the pimple-loop. Everything before the pimple-loop, excluding the header, is presented for
the pimpleFoam.C file below.

#include "fvCFD.H"

#include "singlePhaseTransportModel.H"
#include "turbulenceModel.H"

#include "pimpleControl.H"

#include "fvIOoptionList.H"

#include "IOporosityModelList.H"
#include "IOMRFZoneList.H"

J/ * % %k % % % % x % * % % * % % % % % * * *x * * % * * % *x *x % x *x //

int main(int argc, char *argv[])

{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "createFvOptions.H"
#include "initContinuityErrs.H"

pimpleControl pimple(mesh);
// * % k x >k kx ok >k *x k *x *k *x *x >k *x * * *x * *x * *x *x * *x *x *x *x *x //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
#include "readTimeControls.H"
#include "CourantNo.H"

#include "setDeltaT.H"

runTime++;
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69
70 Info<< "Time = " << runTime.timeName () << nl << endl;
Listing 3.13: file: pimpleFoam.C

The same content for the pimpleDyMFoam.C file is presented below

34

35 #include "fvCFD.H"

36 #include "singlePhaseTransportModel.H"

37 #include "turbulenceModel .H"

38 #include "dynamicFvMesh.H"

39 #include "pimpleControl.H"

40 #include "fvIOoptionList.H"

41

42 // * *x k * x k% * x % * % % % % % % * *x * * *x % * % * * % % *x % x x //

43

44 int main(int argc, char x*argv[])

45 {

46 #include "setRootCase.H"

47

48 #include "createTime.H"

49 #include "createDynamicFvMesh.H"

50 #include "initContinuityErrs.H"

51 #include "createFields.H"

52 #include "createFvOptions.H"

53 #include "readTimeControls.H"

54

55 pimpleControl pimple(mesh);

56

57 // % % x * % % % % % *x % % *x * % % *x % % % % % *x % *x x *x *x x x //

58

59 Info<< "\nStarting time loop\n" << endl;

60

61 while (runTime.run())

62 {

63 #include "readControls.H"

64 #include "CourantNo.H"

65

66 // Make the fluxes absolute

67 fvc::makeAbsolute (phi, U);

68

69 #include "setDeltaT.H"

70

71 runTime ++;

72

73 Info<< "Time = " << runTime.timeName () << nl << endl;

74

75 mesh.update () ;

76

T if (mesh.changing() && correctPhi)

78 {

79 #include "correctPhi.H"

80 }

81
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// Make the fluxes relative to the mesh motion
fvc::makeRelative (phi, U);

if (mesh.changing() && checkMeshCourantNo)
{

#include "meshCourantNo.H"

}

Listing 3.14: file: pimpleDyMFoam.C
The following apparent differences can be found between the two files

1. The inclusion of the file dynamicFvMesh.H in the pimpleDyMFoam solver, which is not present
in the pimpleFoam solver.

2. The inclusion if the file createMesh.H in pimpleFoam is changed to createDynamicFvMesh.H
in pimpleDyMFoam.

3. The two declaration files I0porosityModelList.H and IOMRFZonelList.H are not present in
the pimpleDyMFoam solver.

4. The inclusion of the file readTimeControls.H in pimpleFoam has been changed to readControls.H
in pimpleDyMFoam.

5. The finite volume calculus operation fvc: :makeAbsolute (phi,U) is added in the pimpleDyMFoam
solver.

6. The operation mesh.update() in the mesh is added in the pimpleDyMFoam solver.

7. The inclusion of the file correctPhi.H is done under some conditions in the pimpleDyMFoam
solver.

8. The finite volume calculus operation fvc: :makeRelative (phi,U) is added in the pimpleDyMFoam
solver.

9. The inclusion of the file meshCourantNo.H is done under some conditions in the pimpleDyMFoam
solver.

3.2.2 Mesh refinement in pimpleDyMFoam

In this section, the handling of dynamic meshes in pimpleDyMFoam will be presented. This includes
the two changed include files dynamicFvMesh.H and createDynamicFvMesh.H as well as the steps
the solver performs before the pimple loop starts, i.e. line 61 - 88 in Listing 3.14.

dynamicFvMesh.H This extra file is included to define the base class of dynamic meshes,
dynamicFvMesh. It is included from

$FOAM_SRC/dynamicFvMesh/1lnInclude/

It inherits the attributes of the class fvMesh, which is the class for non dynamic meshes. It in
addition builds upon the polyMesh class and adds features needed for finite volume discretization.
Hence, roughly speaking, the class dynamicFvMesh is an extension of the fvMesh class with added
base features for dynamic meshes.
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createDynamicFvMesh.H This file is used as a substitute to the createFvMesh.H file. It is also
included from

$FOAM_SRC/dynamicFvMesh/1lnInclude/

What it does is that it uses a function in the file dynamicFvMeshNew.C, located in the same directory,
to create a mesh of the class specified in the dynamicMeshDict dictionary, located in the constant
directory of the case. In the case of mesh refinement, this class will be called dynamicRef ineFvMesh,
for which refinement specific functions are defined.

readControls.H This file is included instead of the file readTimeControls.H and is located in
the same directory as the solver. It is an extension of this file and reads

#include "readTimeControls.H"
const dictionary& pimpleDict = pimple.dict();

const bool correctPhi =
pimpleDict.lookupOrDefault ("correctPhi", false);

const bool checkMeshCourantNo =
pimpleDict.lookupOrDefault ("checkMeshCourantNo", false);

const bool ddtPhiCorr =
pimpleDict.lookupOrDefault ("ddtPhiCorr", true);

Listing 3.15: file: readControls.H

The file readTimeControls.H is located at

$FOAM_SRC/finiteVolume/cfdTools/general/include/

It is used to look up time parameters in the controlDict dictionary, located in the system directory
of the case. The first one is the boolean variable adjustTimeStep, which is set to false by default.
The second one is the scalar maxCo which is used to specify the maximum Courant number and is
set to 1 by default. The last one is the scalar maxDeltaT, used to specify the largest allowed time
step in the simulation, and it is set to a large value by default.

For the purpose of dynamic meshes, the readControls.H file also includes three new boolean
variables, namely correctPhi, checkMeshCourantNo and ddtPhiCorr. These variables are set in
the fvSolution dictionary, within the section specifying the PIMPLE controls. The specific use of
these variables will be discussed when they are used later in the code.

CourantNo.H This file is located at

$FOAM_SRC/finiteVolume/cfdTools/incompressible/

It is used to calculate and print out the mean and max Courant number based on the previously used
time step. In case the time step is taken as constant, i.e. adjustTimeStep = false, the Courant
number calculation only serves to inform the user of which Courant number the time step and mesh
gives. The Courant number is furthermore computed in OpenFOAM according to

1
_ 2t Z f |¢f | AL

2 AV
Here, ¢5 = Ap(ny - uy), is the velocity flux normal to surface f of the mesh control volume with
volume AV. For a hexahedral mesh with straight edges, this formula will give the following formula
for the Courant number

Co
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o |t |uy‘ |u|
CO<A$+Ay+AZ At.

This is a common form to express the Courant number, which according to the Courant-Friedrichs-
Lewy condition generally should be less than 1 to obtain stable solutions to time marching problems.

fvc::makeAbsolute(phi, U) This function is defined in the file fvcMeshPhi.C that is located at

$FOAM_SRC/finiteVolume/1lnInclude/

This operation adds the flux caused by the movement of the mesh to the flux across the mesh control
volume boundaries. This gives the absolute flux relative to a fixed and non moving boundary, instead
of the flux relative to the movement of the mesh control volume boundaries. This operation will
also only be performed in the case where the mesh is moving, and hence for mesh refinement it will
not be used.

setDeltaT.H This file is also found in

$FOAM_SRC/finiteVolume/lnInclude/

This routine sets the value for At to be used in the next time integration. It does this to satisfy the
conditions that the maximum Courant number as well as time step, if specified in the controlDict,
are not exceeded. It does this using the Courant number calculated recently, which is based on the
current velocities and previous time step. Also note that in the case of a moving mesh, the fact that
the fluxes have been made absolute already does not affect this routine since the Courant number was
evaluated prior to the makeAbsolute routine was called. Denoting the maximum Courant number
and time step set in the controlDict by maxCo and maxDeltaT, the calculated Courant number
CoNum, and the previous time step At, the current time step, At, is according to the implementation
calculated as

AF — maXCo7

CoNum
AF = min(min(AF,1+0.1AF),1.2),
At = min(AFA%, maxDeltaT).

Hence, the new value At is set based on the old value Af multiplied with a scaling factor AE. The
second equation serves to relax this scaling factor in order to avoid too large increases in time steps
and thereby unstable solutions. If the relaxation does not become active, the algorithm calculates At
as the largest possible time step allowed, either by the Courant number condition or the maximum
time step condition. Finally this routines prints out the new time step.

mesh.update() The function update() operates on the mesh depending on which subclass to
dynamicFvMesh that it belongs to. In case of mesh refinement, this class is called dynamicRefineFvMesh,
and the corresponding implementation of update () is found in the file dynamicRefineFvMesh.C lo-
cated at

$FOAM_SRC/dynamicFvMesh/dynamicRefineFvMesh/

The function update() itself starts at line 1073 and in Figure 3.1 a simplified block scheme of the
function is presented.
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Call mesh.update().

Start of mesh refinement

dynamicMeshDict.
Includes the parameters
that govern mesh refine-
ment together with defini-

iton of governing field.

Exit.

Refinement complete.

[ update () 1
Y
‘ Parameter setup.
l Set th ) I; Read dynam-
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! mesh refinement using 1€eS
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|
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|
?
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|
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|
: changing- = hasChanged.
|
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i hasChanged to true.
|
|
; nCellsToRefine.
: Check if any cells got unrefine.
‘ ;
: selected for refinement. Unrefine the points se-
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l
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: .
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: and map the fields. Check if any points got
: selected for unrefinement.
|
l
! .
i Refined mesh. No—| selectUnrefinePoints.
: Set the local boolean Select points based
3 hasChanged to true. on unrefinelevel.
|

Figure 3.1: Block scheme of mesh refinement in update().
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To begin with, it reads the dictionary dynamicMeshDict (Read dynamicMeshDict), located in
the constant directory of the case. This dictionary specifies all the parameters that will govern the
mesh refinement together with the name of the field that the refinement will be based on. The
dictionary is stored in the local dictionary called refineDict.

The function uses a local boolean variable called hasChanged, which will be true if the mesh has
been refined or unrefined. To begin with, no modifications to the mesh has been done and hence it
is set to false by default (Set default).

After this the function will check if refinement is enabled or not (Refinement enabled?). This
means that the parameter refineInterval in refineDict is checked. If this parameter is set to
0, the function will not enable mesh refinement, but instead go to Update. This enables the user
to run pimpleDyMFoam without refinement, which can be useful if a converged solution is desired
before enabling mesh refinement. If the parameter refineInterval is greater than 0, the function
will enable mesh refinement/unrefinement with time step intervals specified by the parameter. In
this case it will move on (Parameter setup).

The next step is simply to extract all parameters from the refineDict and create local variables
(Parameter setup). In addition to this, the field that govern mesh refinement is read as well and
put into the local field vF1d. The field governs mesh refinement in the sense that it’s values in every
cell are used to determine if that cell should be refined /unrefined or not as we will see soon.

To avoid the mesh refinement to create too many cells, which could cause the memory or compu-
tational time to explode, there is a parameter maxCells specifying the maximum amount of cells the
mesh may include. The function will therefore check the current amount of cells against maxCells
before refining the mesh and creating more cells (Allowed to refine?). If the amount of cells are
greater than nCells, the function will proceed to the unrefinement (selectUnrefine).

In case there is room for refinement, the function will proceed to select candidate cells for
refinement (selectRefineCandidates). A cell will become a candidate if the value of vF1d in cell
i lies in between the defined limits, i.e.

lowerRefinelLevel < vF1d; < upperRefinelevel.

This checking is done in the local function error, which computes the error of each cell 7, defined as

err; = min(vF1ld; — lowerRefineLevel, upperRefineLevel — vF1d;).

If err; > 0 for a given cell, then that cell will be marked as a candidate for refinement. It is not
hard to see that this calculation gives the criteria that the field value should lie within the specified
limits. For a qualified cell, the value err; represent the closest distance to either of the limits
lowerRefinelLevel or upperRefinelLevel. This information is not used later on, but comments in
the code suggest that it is intended to be used in later versions to do a better selection of cells to
refine. For now however, a cell is either a candidate or not.

When the candidates for refinement have been selected, it is time to proceed and select the cells
that will actually be refined among these candidates (selectRefineCells). There are two cases

Table 3.2: Parameters that can be set in the dynamicMeshDict.

Parameter Description Allowed values
refineInterval Amount of time steps between refinement 0<
maxRefinement Maximum cellLevel for a cell that is refined 0<
maxCells Maximum amount of cells in mesh allowed 0<

field Name of field that govern refinement/unrefinement "field name”
lowerRefinelLevel | Lower limit of field value in a cell to allow refinement 0<
upperRefineLevel | Upper limit of field value in a cell to allow refinement 0<
unrefineLevel Upper limit value of field value in a cell to allow unrefinement | <0
uBufferLayers Amount of buffer layers for unrefinement <0
correctFluxes List of fluxes to be remapped on newly created faces List of names
dumpLevel Unknown boolean variable true/false
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that can emerge at this stage. In the first case, the number of cells after refinement of all the
candidate cells will not exceed maxCells. In the second case, the amount of cells after refinement of
all candidates cells would exceed maxCells, which is not allowed. To estimate the amount of cells
after refinement, the function assumes that every refined cell is split into 8 new ones. This means
that for every refined cell, the total amount of cells will increase by 7. Hence, the total amount of
cells that can be refined, nTotToRefine, can be estimated as

. maxCells - nTotCells
nTotToRefine = ,

7

where nTotCells is used to denote the total amount of cells prior to refinement. Based on this
estimation, the code then decides which of the two cases described above that exist. If the amount
of candidates are less than nTotToRefine, we have the first case and vice versa if the amount of
candidates are more. In the first case, the code allows, or marks, all candidates for refinement. In
the second case it will simply select cells for refinement until the total amount becomes larger than
nTotToRefine. Hence no intelligent selection is performed in this implementation, but as far as the
author understands it, the foundation for better selection has been laid.

At this stage the function has a set of cells that will be refined and that satisfies all the listed
criteria above. Before moving on to the refinement routine, the function will also do a trivial check
to see if any cells got selected for refinement at all (nCellsToRefine). It could be the case that no
cell was selected since the value of the field vF1d did not match for any cell. If this is the case the
function will move on to the unrefinement procedure.

In the case where cells got selected, the cells will be refined and the fields will be mapped
onto the new mesh. This all happens in the routine called refine, which starts at line 205 in
dynamicRefineFvMesh.C. The details of how the mapping is performed and how the mesh is split
have not been investigated in any detail. The code however claims that the fields are mapped and
that a new approximate flux is calculated at the newly created faces. This correction/mapping will
only be done if the fluxes have been listed under correctFluxes in the dynamicMeshDict. Please
note that many time integration algorithms, such as backward Euler or Crank Nicholson, use old
values, not only those of the current time step, to integrate to the next time step. This means that
correctFluxes needs to include these as well. How this is done will be shown in the tutorial later.
If the fluxes are not recreated the function will still work and solver run, but the results will be
redundant.

After refinement and mapping has been performed, the function will set the local boolean
hasChanged to true (Refined mesh). It will then move on to the unrefinement.

The next thing that happens is that the function will select points to unrefine (selectUnrefinePoints).
Of course, a cell in itself can not be unrefined, but rather a common corner of a set of cells can
be removed to create a larger cell. The selection of points to remove is made among those corre-
sponding to cells that have not been refined. In fact, the function also allows for the possibility to
protect neighboring cells to cells that have been refined from being unrefined. This is possible to
control through the parameter nBufferLayers in the dynamicMeshDict. This allows the user to
specify how many layers of cells from those that have been refined that should be protected from
unrefinement. The restoring points will now be selected for unrefinement based on the criteria that
the (interpolated) value of the field vF1d at point i satisfies

pFld, < unrefinelevel.

The interpolation is done by taking the average value of the field vF1d in the neighboring cells.

Before moving on to the mesh unrefinement, the function also checks if any points got selected
for unrefinement (pointsToUnrefine).

If it turned out that some points qualified for unrefinement, the mesh will be unrefined using
the routine unrefine. As before, the fields are also mapped and the fluxes are recreated approxi-
mately on the new faces. Also as before, the fluxes will only be recreated if they are listed under
correctFluxes in the dynamicMeshDict.

Since the mesh has changed, the local boolean hasChanged will be set to true (Unrefined mesh).
This is done since it may happen that the mesh only was unrefined.
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The function concludes in the step that have been named Update here. In this step a function
called changing is called with the boolean hasChanged as parameter. This function belongs to
the class polyMesh, which all dynamicFvMesh classes are subclasses of. This function changes the
boolean changing_ in the polyMesh class to the value of the parameter supplied to the function.
This boolean can thus be used, as will be seen later, to see if the mesh was changed this time step
or not.

correctPhi.H This routine is located in the same directory as the solver, i.e. it is written specif-
ically for this solver. As seen from Listing 3.14, it is only going to be active if the two booleans
mesh.changing() and correctPhi are true. The second one we have already seen, it is set in
the fvSolution dictionary and read by readControls.H. Hence, the user chooses whenever this
routine will take effect or not, since the boolean correctPhi is set to false by default. The first
boolean is returned from the member function changing(), whose definition can be found in the
file polyMesh.H included from

$FOAM_SRC/0OpenFO0AM/1nInclude/

This file declares the class polyMesh, which is inherited by the class fvMesh, which in addition is
inherited by the dynamicFvMesh class and its sub classes. The definition of the public member
function changing() furthermore reads

//- Is mesh changing (topology changing and/or moving)
bool changing() const
{

return changing_;

}

Listing 3.16: file: polyMesh.H

Hence, this function returns the boolean changing_, which was set to true if the mesh is refined, as
noted previously.

In the file correctPhi.H, the pressure corrector equation of the PIMPLE algorithm is solved for
the amount of times prescribed by the variable nNonOrthogonalCorrectors, set in the fvSolution
dictionary. The part of the code that does this reads

while (pimple.correctNonOrthogonal ())

{
fvScalarMatrix pcorrEqn
(
fvm::laplacian(rAU, pcorr) == fvc::div(phi)
)
pcorrEqn.setReference (pRefCell, pRefValue);
pcorrEqn.solve () ;
if (pimple.finalNonOrthogonalIter ())
{
phi -= pcorrEqn.flux();
}
}

Listing 3.17: file: correctPhi.H

The purpose of this is to obtain a so called pressure corrector that will be used to correct the fluxes
over the mesh cells to obey continuity. The reason to why this is included prior to actually entering
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the PIMPLE loop further down the code is to compensate for the fact that the mesh may have
changed. In a case where the mesh changes, the different fields need to be mapped from the old
to the new mesh. This will naturally introduce some interpolation error, which for the case of face
fluxes, can cause continuity to not be obeyed anymore on the new mesh. Hence, this part of the
code offers the possibility to correct the fluxes to obey continuity before solving for the next time
step. Speaking generally, when solving numerically for the next time step, the current time step
comes in as a source term in the linear system of equations that is solved for. Therefore, since an
error has been introduced in the mapping between the meshes, this error will continue to affect the
solution in the next time step. Note that this argument is valid for any field that is solved for, i.e.
not only the velocity field.

fvc::makeRelative(phi, U) This routine performs the opposite operation of fvc: :makeAbsolute (phi,
U). It’s defined in the file fvcMeshPhi.C found in

$FOAM_SRC/finiteVolume/lnInclude/

This function hence subtracts the flux of the mesh at every cell face, leaving the flux at the cell
faces that is relative to the moving mesh. Since this routine only is used in cases where the mesh is
moving, it is not used when mesh refinement is.

meshCourantNo.H The file meshCourantNo.H is included from

$FOAM_SRC/dynamicFvMesh/1lnInclude/

As can be noted from Listing 3.14, this routine is used in the case where the mesh has changed
(mesh.changing()) and if the boolean checkMeshCourantNo has been set to true. The second
boolean we saw was set in readControls.H, where it was read from the fvSolution dictionary.
The routine in meshCourantNo.H performs the exact same operations as the routine found in
CourantNo.H considered previously but for the flux caused by the mesh. In other words, the flux
over the cell faces caused by the mesh motion is used instead of the relative flux of the fluid over
the cell faces. This means that the mesh Courant number is based on the velocity of the mesh
rather than the fluid. It’s use has not been further investigated, since the mesh is not moving in the
refinement case and thus this routine should not be used.

3.2.3 Suggested modifications for mesh refinement

The pimpleDyMFoam solver is mainly developed to handle moving meshes but can also handle mesh
refinement. Since it is originally written for moving meshes, there are some features that are missing
and that in some way should be implemented in the future to obtain a better solver.

Smoother for turbulent quantities As noted when considering the include file correctPhi.H,
the fluxes are corrected in order to satisfy continuity over the computational cells. This addresses
the problem introduced by mapping the velocity/flux field but not the fact that turbulent quantities
such as k, € or w have been mapped as well. As discussed before, the solution at the current time
step affects the solution of the next time step and hence if the current solution have obtained a large
error in the mapping procedure, this error will live on to the next time step. It is therefore suggested
that a ”"smoothing” procedure is introduced after the velocity field has been corrected but before
the PIMPLE loop start. This would constitute of a set of iterations in the solution of the turbulent
equations in order to converge the solution of the turbulent quantities on the new mesh.

Adjusting At for the new mesh In cases where the Courant number is used to limit the value
of At, it was noted above that this is done prior to updating the mesh. This means that the value
of At is based on the Courant number obtained on the mesh prior to mesh refinement. If the mesh
would be refined, come cells are split into smaller cells. In the current case, At, as well as the
velocities ug, uy and u, are fixed. According to the definition of the Courant number, this would
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mean that if for example Az, Ay and Az are divided by two, the Courant number for those cells
would become twice as large. Hence, the way the solver operates right now will cause the actual
Courant number to becomes larger in refined cells, which may cause instabilities. The solution would
be to incorporate a recalculation of the Courant number after mesh refinement, as well updating At
based on this. These routines should naturally only be active in the case of mesh refinement and be
included after the velocity field/fluxes have been corrected. Note also that the update of the time
through runTime++ would have to be moved as well.
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Chapter 4

Implementing k£ — w SST DES

The first section of this chapter describes step by step how the turbulence model k£ —w SST DES can
be obtained by modifying the existing k —w SST SAS model. The next section then describes how
to further modify the turbulence model to produce a volScalarField that can control the mesh
refinement.

4.1 k—w SST DES

In this section a new source term in the k equation will be added, which which is a modification of
the dissipation. Terms unique to the SAS model will also be taken away to avoid unnecessary term
or constants being computed.

One thing that is important in order to achieve the correct turbulence model is to make sure that
the different terms in the transport equations that are reused actually are implemented as described
in the paper. This is due to that turbulence models often get modified over the years even though
the actual name stays the same. This was done in a previous section, and this analysis will be the
basis for the step by step guide below in how to implement the k — w SST DES turbulence model.

4.1.1 Copying the kOmegaSSTSAS model

To begin with, the SAS model will be copied into the user directory. Start by opening a new terminal
window and type

0F22x

to initialize the OpenFOAM 2.2.x environment. Next change directory to

cd $WM_PROJECT_DIR

Now copy the kOmegaSSTSAS turbulence model into the user directory according to

cp -r --parents src/turbulenceModels/incompressible/LES/\
kOmegaSSTSAS/ $WM_PROJECT_USER_DIR

Finally change directory to where the turbulence model has been copied in the user directory ac-
cording to

cd $WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/LES/

4.1.2 Creating the class kOmegaSSTDES

To create a new class, start by changing name of the directory according to
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mv kOmegaSSTSAS/ kOmegaSSTDES/

Now continue by removing the .dep file inside the turbulence model directory and change name of
the .C and .H file to an appropriate name

rm kOmegaSSTDES/kOmegaSSTSAS.dep
mv kOmegaSSTDES/kOmegaSSTSAS.C kOmegaSSTDES/kOmegaSSTDES.C
mv kOmegaSSTDES/kOmegaSSTSAS.H kOmegaSSTDES/kOmegaSSTDES.H

Now we need a Make directory where the make files will reside, it should lie in the same directory
as the turbulence model directory. Create it and then go into it according to

mkdir Make/
cd Make/

Now we will create the necessary files files and options. Starting with files, it may be created
as

gedit files

In the new empty file, we must add our new turbulence model to tell the compiler creating the
dynamic turbulence model library where the new turbulence model should be included. Do this by
including the lines

kOmegaSSTDES/kOmegaSSTDES.C

LIB = $(FOAM_USER_LIBBIN)/libmyIncompressibleLESModels

The content of files is similar to the one found in the installation. The difference is that the
library should be put in $ (FOAM_USER_LIBBIN) instead and the name should be changed from being
libIncompressibleLESModels to something else.

Next the options file is created according to

gedit options

In the new file that opens, add the following lines

EXE_INC = \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/LES/LESdeltas/1lnInclude \
-I$(LIB_SRC)/turbulenceModels/LES/LESfilters/1nInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/finiteVolume/1lnInclude \
-I$(LIB_SRC)/meshTools/1lnInclude \
-I$(LIB_SRC)/turbulenceModels/incompressible/LES/1nInclude

LIB_LIBS =

These lines are also found in the original options file in the installation except for the last include
line. This one is needed since the turbulence model does not lie in the original directory anymore,
but still needs files from there.

Now change directory to where the declaration and definition files are located

cd ../kOmegaSSTDES/

To change the name of the class, we must substitute the line "kOmegaSSTSAS” to "kOmegaSST-
DES” in both the declaration file and the definition file. This is done according to
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sed -i s/kOmegaSSTSAS/kOmegaSSTDES/g kOmegaSSTDES.H
sed -i s/kOmegaSSTSAS/kOmegaSSTDES/g kOmegaSSTDES.C

A good practice is to also look through the files and make sure that the name of the class has
changed. Finish by first cleaning up the turbulence model library and then compile the turbulence
model in order to see that everything works so far

cd .
wclean
wmake libso

4.1.3 Modifying kOmegaSSTDES.H
We will start by modifying the file kOmegaSSTDES.H, so begin by changing directory and open it

cd $WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/LES/\
kOmegaSSTDES/
gedit kOmegaSSTDES.H

The reader may of course choose another editor instead of gedit. We will start by adding a new
header to our new file, so that it is clear which turbulence model we actually use, do this by changing
the lines

Description
kOmegaSSTDES LES turbulence model for incompressible flows
based on:

"Evaluation of the SST-SAS model: channel flow, asymmetric diffuser
and axi-symmetric hill".

European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006.

Lars Davidson

The first term of the (sas expression is corrected following:

DESider A European Effort on Hybrid RANS-LES Modelling:
Results of the European-Union Funded Project, 2004 - 2007
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design).

Chapter 2, section 8 Formulation of the Scale-Adaptive Simulation (SAS)
Model during the DESIDER Project. Published in Springer-Verlag Berlin

Heidelberg 2009.
F. R. Menter and Y. Egorov.

Listing 4.1: file: kOmegaSSTDES.H

to the following new description, including a small disclaimer

Description
k-Omega-SST-DES LES turbulence model for incompressible flows
based on:

"Ten Years of Industrial Experience with the SST Turbulence Model".

Turbulence Heat and Mass Transfer 4.
F. R. Menter, M. Kuntz, R. Langtry.
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A note on the implementation with respect to the paper:

- The transport equations implemented are divided by rho, as opposed to the
presentation of them in the paper, since the flow is incompressible

- There is a choice to use the model in DES (Detached Eddy Simulation) mode
or DDES (Delayed Detached Eddy Simulations) mode. The latter protects the
boundary layer from being resolved with LES and is used by default. The
other part is commented away.

- Model constants are not allways named the same as in the paper, see comments
in declaration of constants below.

DISCLAIMER:

This is a student project work in the course CFD with OpenSource software
taught by Hakan Nilsson, Chalmers University of Technology, Gothenburg, Sweden.

Listing 4.2: file: kOmegaSSTDES.H

Now lets comment away unnecessary model constants that are unique to the SAS model. Start by
commenting away the following lines

dimensionedScalar Cs_;

dimensionedScalar alphaPhi_;
dimensionedScalar zetaTildaZ2_;
dimensionedScalar FSAS_;

Listing 4.3: file: kOmegaSSTDES.H

to obtain

// dimensionedScalar Cs_;

// dimensionedScalar alphaPhi_j;
// dimensionedScalar zetaTilda2_;
// dimensionedScalar FSAS_;

Listing 4.4: file: kOmegaSSTDES.H

After this, comment away the last two SAS model constants and also add the new constant Cpgg
as a dimensionedScalar. Do this by modifying the lines

dimensionedScalar Cmu_;
dimensionedScalar kappa_;

Listing 4.5: file: kOmegaSSTDES.H

to

// dimensionedScalar Cmu_;
// dimensionedScalar kappa_;

dimensionedScalar CDES_; // C_DES

Listing 4.6: file: kOmegaSSTDES.H
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Now the new model includes the correct model constants in the class declaration. If the reader wants
to, it can also add a comment after each model constant, like it has been done for CDES_, with the
name of the constant in the paper. For a reference to these names please see Table 3.1.

The next thing to do is to comment away the protected member function called Lvk2. This is a
function exclusive to the SAS model which computes the Von Karman length scale used to identify
unsteadiness and trigger LES mode in the SAS model. After commenting, the code should read

/ *
tmp<volScalarField> Lvk2
(
const volScalarField& S2
) const;

*/

Listing 4.7: file: kOmegaSSTDES.H

As noted earlier when studying the SAS implementation, it is convenient to use a function that
creates the Fpgps or Fppps term. To give the user a choice, both terms will be added, but one of
them will be commented away and hence not become active when compiling the dynamic library.
As Menter implies that the DDES implementation with the boundary layer protector is the safest
approach, it will be the one applied in this case [1]. Therefore add the following lines after the
declaration of the blend function

// Choose DES or DDES by commenting the non desired option
// tmp<volScalarField> FDES() const;

tmp<volScalarField> FDDES(const volScalarField& FS) const;

Listing 4.8: file: kOmegaSSTDES.H

If the reader would like to use DES model instead, it is merely a matter of switching the commenting
or simply adding only the term preferred. As seen, the function is returning a volScalarField of
type tmp, which is the preferred alternative when defining function that will be evaluated for every
cell in the mesh and thus return large amount of data. As can be seen as well, the Fppgg term
takes in the argument FS, which as stated in the theory can be chosen as either F; or F5.

After this step the necessary changes to the kOmegaSSTDES.H file are done, next is the file
kOmegaSSTDES. C.

4.1.4 Modifying kOmegaSSTDES.C

As seen previously, the definition file starts with defining the protected member functions. The first
thing that therefore needs to be done is to remove the definition of the Von Karman length scale,
Lvk2. Hence comment away its definition to obtain

/ *
tmp<volScalarField> kOmegaSSTDES::Lvk2
(

const volScalarField& S2
) const
{

return max

(

kappa_*sqrt (S2)
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/(
mag (fvc::laplacian(U()))
+ dimensionedScalar
(
"ROOTVSMALL™",
dimensionSet (0, -1 , -1, 0, 0, 0, 0),
ROOTVSMALL
)
),
Cs_xdelta ()
)
}
*/

Listing 4.9: file: kOmegaSSTDES.C

With this done, its time to define the Fpgs and Fppgs terms. In this implementation, the DDES
term is used and hence the other term should be commented away. This is achieved by adding the
following lines directly after the Lvk2 just commented away

// Choose DES or DDES by commenting the non desired option

// F_DES term definition

/ *
tmp<volScalarField> kOmegaSSTDES::FDES() const
{
return max
(
sqrt (k_)/(CDES_*xbetaStar_xomega_x*delta()),
scalar (1)
)
¥
*/

// F_DDES term definition, FS = F1 or F2 may be chosen as the
// boundary layer protector
tmp<volScalarField> kOmegaSSTDES::FDDES(const volScalarField& FS) const
{
return max
(
sqrt (k_)/(CDES_*xbetaStar_xomega_x*delta())*(scalar (1) - FS),
scalar (1)

)

Listing 4.10: file: kOmegaSSTDES.C

Next in the code comes the constructor of the class kOmegaSSTDES, and here we need to include our
new model constant Cpgg as well as remove constants no longer in use. The constants that should
be removed are Cs_, alphaPhi_, zetaTilda2_, FSAS_, Cmu_ and kappa. since they are all exclusive
to the SAS model. Make sure to comment away them all, which for Cs_ simply gives

/ *

Cs

(

dimensioned<scalar>::lookupOrAddToDict
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(
"Cs",
coeffDict_,
0.262
)
),
*/

Listing 4.11: file: kOmegaSSTDES.C

After all SAS model constants have been commented away, the Cpgg constant must be defined as
well. Therefore, after the commented constant kappa_, add the following lines

CDES_
(
dimensioned<scalar>::lookupOrAddToDict
(
"CDES™",
coeffDict_,
0.61
)

),

Listing 4.12: file: kOmegaSSTDES.C

With this accomplished, its time to add the DES functionality in the function correct, which is the
one that solves the transport equations and updates the turbulent/sub grid scale viscosity. As the
SAS features are also to be removed, these terms will be commented away. To begin with, the fields
not used in the model should not be calculated prior to setting up and solving the discrete system
of equations. Therefore comment away the calculation of the field denoted L according to

// volScalarField L(sqrt(k_)/(pow025(Cmu_)*omega_));

Listing 4.13: file: kOmegaSSTDES.C

Next its time to calculate the field Fpps or Fppgs using the previously defined functions. This
is done by adding the following lines after the production term G has been calculated and prior to
solving for k£ according to

// volScalarField FDES(this->FDES());
volScalarField FDDES(this->FDDES(F1));

Listing 4.14: file: kOmegaSSTDES.C

Once again, note that it is the DDES features that are implemented here. Also note that it is
crucial that the Fppgg is computed after the F1 field, since it relies on it as a parameter. Next
the transport equation for k is going to be modified so that the dissipation term includes the DES
modification. This is done by adding the newly computed field FDES or FDDES into the first slot of
the Sp( , ) function creating the source term. The final result should look like

// Turbulent kinetic energy equation

{
fvScalarMatrix kEqn

(
fvm::ddt (k_)
+ fvm::div(phi (), k_)
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- fvm::laplacian(DkEff (F1), k_)

min (G, cl_xbetaStar_xk_xomega_)
- fvm::Sp(betaStar_xFDDES*omega_, k_) // F_DDES modification
// - fvm::Sp(betaStar_xFDES*omega_, k_) // F_DES modification
)

Listing 4.15: file: kOmegaSSTDES.C

Note that it does not work to include the FDES/FDDES term in the second slot, i.e. multiplying it
with k_.

After the k equation has been solved, a field unique to the SAS implementation is being calculated
which is needed in a source term in the w equation that is not used in the DES model. This field is
called grad_omega_k and should be commented away according to

/ *
tmp<volScalarField> grad_omega_k = max
(
magSqr (gradOmega)/sqr (omega_),
magSqr (gradK)/sqr(k_)
)
*/

Listing 4.16: file: kOmegaSSTDES.C

The next thing that needs to be done is to remove the source term in the w equation that is unique
to the SAS model. It is the last entity of the equation and should be commented away to get the
following

// Turbulent frequency equation

{
fvScalarMatrix omegaEqn
(
fvm::ddt (omega_)
+ fvm::div(phi(), omega_)
- fvm::laplacian(DomegaEff (F1), omega_)
gamma (F1)*S2
- fvm::Sp(beta(F1l)*omega_, omega_)
- fvm::SuSp // cross diffusion term
(
(F1 - scalar (1))*CDkOmega/omega_,
omega_
)
/ *
+ FSAS_
*xmax
(
dimensionedScalar ("zero",dimensionSet (0, 0, -2, 0, 0), 0.0),
zetaTilda2_xkappa_*S2*sqr (L/Lvk2(S2))
- 2.0/alphaPhi_xk_x*grad_omega_k
)
*/
)
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Listing 4.17: file: kOmegaSSTDES.C

Finally, the read () function should be modified in order to exclude SAS model constants and include
the new DES model constant. The read() function is present at the end of the file and should be
modified according to

bool kOmegaSSTDES::read ()
{
if (LESModel::read())
{

alphaKl_.readIfPresent (coeffDict ());
alphaK2_.readIfPresent (coeffDict ());
alphaOmegal_.readIfPresent (coeffDict ());
alphaOmega2_.readIfPresent (coeffDict ());
gammal_.readIfPresent (coeffDict ());
gamma?2_.readIfPresent (coeffDict ());
betal_.readIfPresent (coeffDict ());
beta2_.readIfPresent (coeffDict ());
betaStar_.readIfPresent (coeffDict ());
al_.readIfPresent (coeffDict ());
cl_.readIfPresent (coeffDict ());
// Cs_.readlfPresent (coeffDict ());
// alphaPhi_.readIfPresent (coeffDict ());
// zetaTilda2_.readIfPresent (coeffDict ());
// FSAS_.readIfPresent (coeffDict ());
CDES_.readIfPresent (coeffDict ());

omegaMin_.readIfPresent (*this);

return true;

3

else

{

return false;

3

Listing 4.18: file: kOmegaSSTDES.C

This concludes the modification of the turbulence model. The final thing to be done is to remove
the kOmegaSSTDES . dep file and then recompile (wclean and then wmake libso). Therefore save and
close the editor and then move into the directory where the Make and kOmegaSSTDES directories are
situated. Then simply type

wclean
wmake libso

This should build a new dynamic library including the new turbulence model. It will then be possible
to link to this library and run simulations using the new turbulence model.

4.2 Lk —w SST DES Refine

This section shows how to modify the kK — w SST DES turbulence model implemented above to
work with the dynamic mesh refinement features of OpenFOAM. As previously discussed, the mesh
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refinement needs a field to determine where the mesh should be refined and not. This field should
be located in the time directory and hence must be computed, either by defining a function in the
turbulence model or in the solver. This field will be a part of the Fpgg term of the turbulence
model and hence the creation and output of this field is what is going to be added to the turbulence
model.

Before doing this, it should be stressed that the method shown here most certainly is not the
only way to achieve this. The way it will be done is pretty straight forward, and follows the way the
turbulent/sub grid scale viscosity is being computed and sent back. It was determined to not use
the new field to further compute the Fpgg term, even though it is a part of it. Instead this part of
the Fpgs term will be recomputed and returned, only to be used to govern mesh refinement. There
are two reasons for this. The first is that the term includes the mesh size A, which only is defined
in the node of a cell. Hence, at the boundary, there is no definition of what A should be and hence
an appropriate boundary condition can be hard to derive. Since the term will reside in the time
directory, some boundary conditions should be imposed and thus the solution would run the risk of
being affected by these if this term was actually used to evaluate Fpgps/Fpprs. Secondly, it was
found more convenient to leave the previous implementation intact and just add new features.

4.2.1 Creating the class kOmegaSSTDESRefine

This entire guide assumes that the k —w SST DES turbulence model already has been implemented
according to above. Start by opening a new terminal window and type

0F22x

to initialize the OpenFOAM environment. Next change directory to where the user turbulence
models are implemented

cd $WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/LES/

Copy the kOmegaSSTDES turbulence model directory into a new directory called kOmegaSST-
DESRefine according to

cp -r kOmegaSSTDES/ kOmegaSSTDESRefine/

Change directory to the new turbulence model, remove the old kOmegaSSTDES.dep file and change
name of the two remaining files according to

cd kOmegaSSTDESRefine/

rm kOmegaSSTDES.dep

mv kOmegaSSTDES.C kOmegaSSTDESRefine.C
mv kOmegaSSTDES.H kOmegaSSTDESRefine.H

Then substitute the line kOmegaSSTDES for kOmegaSSTDESRefine in both the files, which will change
the name of the class.

sed -i s/kOmegaSSTDES/kOmegaSSTDESRefine/g kOmegaSSTDESRefine.H
sed -i s/kOmegaSSTDES/kOmegaSSTDESRefine/g kOmegaSSTDESRefine.C

Finally the model will be added to the files file, in order to tell the compiler that a new turbulence
model should be added to the dynamic library. Open it using for example gedit

cd ..
gedit Make/files

and add the following line after the previous turbulence model

kOmegaSSTDESRefine/kOmegaSSTDESRefine.C

Finally recompile the dynamic library and make sure that everything works
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wclean
wmake libso

4.2.2 Modifying kOmegaSSTDESRefine.H

We will start by going back into the directory where the new turbulence is situated and open it

cd $WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/LES/\
kOmegaSSTDESRefine/
gedit kOmegaSSTDESRefine.H

As for the previous model, add a small description and disclaimer in the beginning of the file, instead
of the previous one according to

Description
k-Omega-SST-DES LES turbulence model for incompressible flows
based on:

"Ten Years of Industrial Experience with the SST Turbulence Model".
Turbulence Heat and Mass Transfer 4.
F. R. Menter, M. Kuntz, R. Langtry.

A note on the implementation with respect to the paper:

- The transport equations implemented are divided by rho, as opposed to the
presentation of them in the paper, since the flow is incompressible

- There is a choice to use the model in DES (Detached Eddy Simulation) mode
or DDES (Delayed Detached Eddy Simulations) mode. The latter protects the
boundary layer from being resolved with LES and is used by default. The
other part is commented away.

- Model constants are not allways named the same as in the paper, see comments
in declaration of constants below.

- A extra volScalarField called LDES or LDDES (dependent on which turbulence
model that is used) is calculated. It is not influencing the solution, but
used solely as a field to indicate where the mesh needs refinement in order
to resolve turbulence. The same quantity is used to calculate the F_DES
or F_DDES term in the k equation, but this is done using a different routine.
LDES = L_t/(C_DES*delta), LDDES = L_t/(C_DES*delta)*(1 - F_S)

DISCLAIMER:
This is a student project work in the course CFD with OpenSource software
taught by Hakan Nilsson, Chalmers University of Technology, Gothenburg, Sweden.

Listing 4.19: file: kOmegaSSTDESRefine.H

Turning to the class declaration, a new void function calculating the term presented in (2.18) or
(2.19) depending on turbulence model will be added. This will resemble the already existing function
updateSubGridScaleFields which calculates the turbulent/sub grid scale viscosity. The new field
will be denoted LDES_ or LDDES_, where the first L is used to denote that it is a measure between two
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different length scales, the turbulent one and the mesh. Add the following lines after the declaration
of the function updateSubGridScaleFields

// Calculate the LDES/LDDES fields
// void updateLDES();
void updateLDDES(const volScalarField& FS);

Listing 4.20: file: kOmegaSSTDESRefine.H

As for previous implementations, the DDES formulation is implemented and the DES formulation
is commented away.

Since a new field is introduced, it must also be declared. Therefore, add a declaration of the new
field LDES_ or LDDES_ after the declaration of the k_, omega_ and nuSgs_ fields and in front of the
commented declaration of Lvk2 according to

// Extra field to indicate mesh refinement

// volScalarField LDES_;
volScalarField LDDES_;

Listing 4.21: file: kOmegaSSTDESRefine.H

This concludes the modifications needed to the declaration file.

4.2.3 Modifying kOmegaSSTDESRefine.C

To begin with, we will add the definition of the protected member function that computes LDES_
or LDDES_ defined in (2.18) and (2.19) respectively. To do this, add the following lines after the
definition of updateSubGridScaleFields

/ *

void kOmegaSSTDESRefine::updateLDES ()

{
LDES_ == sqrt(k_)/(CDES_x*xbetaStar_xomega_x*delta ());
LDES_.correctBoundaryConditions () ;

}

*/

void kOmegaSSTDESRefine::updateLDDES(const volScalarField& FS)

{
LDDES_ == sqrt(k_)/(CDES_x*betaStar_xomega_x*delta())*(scalar(1l) - FS);
LDDES_.correctBoundaryConditions ();

Listing 4.22: file: kOmegaSSTDESRefine.C

Now that the function is defined, we must make sure that the new field, or object, is added in the
construction of the class kOmegaSSTDESRefine. Therefore, add the construction of the fields LDES_
and LDDES_ after the construction of nuSgs_ field. Also, make sure to add an extra comma after the
construction of nuSgs_ to obtain

nuSgs_

(
I0object
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(
"nuSgs",
runTime_.timeName (),
mesh_,
I0object :: MUST_READ,
I0object:: AUTO_WRITE
),
mesh_
), // Don’t forget this comma!
VES
LDES_
(
IOobject
(
"LDES",
runTime_.timeName (),
mesh_,
I0object : : MUST_READ,
I0object:: AUTO_WRITE
),
mesh_
)
*/
LDDES_
(
I0object
(
"LDDES",
runTime_.timeName (),
mesh_,
I0object::MUST_READ,
I0object:: AUTO_WRITE
),
mesh_
)

Listing 4.23: file: kOmegaSSTDESRefine.C

As noted when kOmegaSSTSAS.C was considered, the turbulent/sub grid scale viscosity is computed
inside the body of the constructor. This could of course be done for LDES_ or LDDES_ as well but
there is no point in doing this. The reason is that the field is never used, only updated after k and

w have been solved for. Hence, it does not ne
contrast to the viscosity, which is needed for th

ed to be calculated prior to solving for k and w in
is purpose.

The last modification is therefore to make sure that the new field is calculated using the newly
calculated fields k& and w. For this purpose, add the following lines at the very end of the correct

function after both & and w have been solved

for and the turbulent/sub grid scale viscosity have

been updated using the function updateSubGridScaleFields

// Update the LDES/LDDES term
// updateLDES ();
updateLDDES (F1);

Listing 4.24: file: kOmegaSSTDESRefine.C
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This concludes the creation of the kOmegaSSTDESRefine model. After saving and closing, remove
the kOmegaSSTDESRefine.dep file and then go to the directory containing the turbulence models
and the Make directory and type

wclean
wmake 1libso

This will rebuild the dynamic library containing the user defined turbulence models to include
the new turbulence model kOmegaSSTDESRefine. Since this model will need a new field in the 0/
directory of a case that uses it, please refer to the tutorial section for a guide on how to add this as
well.
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Chapter 5

Simulation with mesh refinement

This chapter describes how to set up a case to run airfoil simulations with mesh refinement. It
requires that the reader has implemented the £ —w SST DES turbulence model for mesh refinement
(kOmegaSSTDESRefine) according to the previous chapter. The case will be set up so that the
solution can run in either 2 or 3D and with only the pimpleDyMFoam solver. For this purpose, a 2D
mesh of a NACA 4412 airfoil, that is prepared for 3D simulations, have been supplied. At the end,
the results of the simulation, both with respect to how the new turbulence model performs and to
how the mesh refinement works, will be presented and briefly discussed.

5.1 Copying files

To begin with, a new OpenFOAM case will be created. Begin by creating a new case by copying an
existing LES tutorial according to

run
cp -r $FOAM_TUTORIALS/incompressible/pisoFoam/les/pitzDaily
mv pitzDaily Airfoil4412Refine

cd Airfoil4412Refine

Before modifying anything, we will also need a dynamicMeshDict for the pimpleDyMFoam solver.
The interDyMFoam solver in OpenFOAM utilizes mesh refinement and hence a dictionary from one
of the interDyMFoam tutorials will be copied into the constant directory.

cp $FOAM_TUTORIALS/multiphase/interDyMFoam/ras/damBreakWithObstacle/\
constant/dynamicMeshDict constant/

Proceed by removing the old blockMeshDict and the boundary file according to

rm constant/polyMesh/blockMeshDict
rm constant/polyMesh/boundary

In the supplied files to this work, a file called blockMeshDict_4412 _2D3D has been supplied. Copy
this blockMeshDict into the constant/polyMesh/ directory. When this is done, rename it as well

by typing

mv constant/polyMesh/blockMeshDict_4412_2D3D \
constant/polyMesh/blockMeshDict

This blockMeshDict will by default give a 2D mesh (one cell in third direction) when running
blockMesh. However, the front and back patches of the mesh are not of type empty, but instead of
type cyclic. Hence, cyclic boundary conditions will also be prescribed on all flow fields, but if only
one cell is present in the third direction the simulation will effectively be 2D. The reason for this is
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to allow the user to choose either to tun the case 2D and save simulation time, or full 3D to allow for
more realistic turbulence to be resolved. To obtain a 3D mesh, the 2D mesh needs to be extruded.
This can be accomplished with the utility extrudeMesh in OpenFOAM, which needs a dictionary.
This dictionary is acquired by typing

cp $FOAM_APP/utilities/mesh/generation/extrude/extrudeMesh/\
extrudeMeshDict system/

This concludes the copying of all necessary files for the case. These will now be modified in the
upcoming sections.

5.2 Creating the mesh

In this section, the mesh will be created and if desired, also extruded to 3D. Start by letting
blockMesh creating the 2D mesh by typing

blockMesh

To be able to extrude the mesh to 3D, we will have to modify the extrudeMeshDict according to
our mesh. Open the file with a preferred editor and make the following changes.

1. Comment away constructFrom patch and uncomment constructFrom mesh to obtain

constructFrom mesh;
//constructFrom patch;
//constructFrom surface;

2. Change the source case of the mesh that will be extruded to the current case to obtain

sourceCase "../Airfoil4412Refine";

3. Tell the extrudeMesh utility that it is the front patch that should be extruded. This will effec-
tively just add a set of layers in the third direction, giving a 3D mesh. It is the sourcePatches
and exposedPatchName that should be changed to front and back respectively to obtain

sourcePatches (front);
// 1If construct from patch: patch to use for back (can be same as sourcePatch)
exposedPatchName back;

4. The mesh will be extruded linearly in the third direction, therefore uncomment the 1inearNormal
option for extrudeModel, and comment the other options (wedge). The changes should look
like

//- Linear extrusion in point-normal direction
extrudeModel linearNormal;

//- Wedge extrusion. If nlLayers is 1 assumes symmetry around plane.
//extrudeModel wedge ;

5. The amount of layers added on the front is specified by nLayers. The new mesh will therefore
contain nLayers + 1 cells in the third direction after extrusion. Specify this parameter to
obtain the desired amount of cells, the author chose 10, according to

nLayers 10;
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6.

Set the expansion ratio for the new layers added to 1.0 according to

expansionRatio 1.0;

There are a lot of different ways extrudeMesh can operate on the mesh, requiring a lot of
different coefficients to be specified for different cases. This extrusion only needs the coefficient
specified within 1linearNormalCoeffs. Therefore, comment away all other ”...Coeffs” sub
dictionaries and make sure that linearNormalCoeffs is uncommented according to

linearNormalCoeffs

{
thickness 0.1;
}

Here, the thickness of the added layer was changed to 0.1 as well. The thickness refers to the
total thickness of all the new layers added, and hence the thickness of one new layer is in the
case of no expansion ration thickness/nLayers. The original mesh have a thickness of 0.01,
which will hence be obtained for the added cells here as well.

When this is done, a 3D mesh can be obtained by typing

extrudeMesh

5.3 The 0/ directory

After the mesh has been created, it’s time to specify proper boundary and initial conditions for
the velocity, pressure and turbulent quantities. As the mesh is created, the wing is oriented with
it’s leading edge in the positive x direction and it’s low pressure side in the positive y direction as
shown in Figure 2.1. The boundary conditions in Table 2.1 together with cyclic boundary conditions
connecting the front and back patch will be implemented. Note that cyclic boundary conditions must
be specified in the blockMeshDict as well, i.e. it must be specified that these patches are going to
be connected through cyclic boundary conditions.

To begin with we will change the name of some of the patches in the existing files to fit our mesh.
Therefore type the following when standing inside the case directory.

sed
sed
sed
sed
sed
sed
sed
sed
sed
sed

-i s/lowerWall/bottom/g 0/U

-i s/upperWall/top/g 0/U

-i s/lowerWall/bottom/g O0/p

-i s/upperWall/top/g 0/p

-i s/lowerWall/bottom/g 0/k

-i s/upperWall/top/g 0/k

-i s/lowerWall/bottom/g 0/nuSgs
-i s/upperWall/top/g 0/nuSgs

-i s/lowerWall/bottom/g O0/nuTilda
-i s/upperWall/top/g 0/nuTilda

5.3.1 Velocity

The velocity is specified in the file 0/U. The velocity will be set to 1 m/s using the freestream
boundary conditions. Begin by changing the initial value of the velocity to the following

internalField uniform (-1 0 0);

The inlet, outlet, top and bottom patch should all have the same boundary conditions, according to
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inlet

{
type freestream;
freestreamValue uniform (-1 0 0);

}

After this, it is time to add the wing patch, at which a no slip boundary condition will be applied.
Therefore, add the following lines after the last of the previous four boundary conditions.

wing
{
type fixedValue;
value uniform (0 0 0);
X

Finally, it is time to add the front and back patch, for which cyclic boundary conditions will be
applied. This is done by first removing the patch called frontAndBack and adding the following
lines

front
{

type cyclic;
b
back
{

type cyclic;
b

Finish by saving and closing the velocity file.

5.3.2 Pressure

The pressure is specified in the file 0/p. The pressure will be initialized to zero everywhere, and
no modification is therefore needed to the initial conditions. Continue by changing the boundary
conditions at the inlet, outlet, top and bottom to freestreamPressure, according to

inlet
{

type freestreamPressure;
b

The boundary condition for the wing is set to zero gradient by adding this patch

wing
{
type zeroGradient;

}

Finally the boundary cyclic boundary conditions needs to be added. Do this by removing the
frontAndBack boundary condition and add the same lines as for the velocity. Finish by saving and
closing the file.

5.3.3 Turbulent kinetic energy

The turbulent kinetic energy conditions are specified in 0/k. Begin by changing the initial condition
to a very small number according to
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internalField uniform 1e-06;

Proceed by setting the initial condition at the inlet, top and bottom according to

inlet
{
type fixedValue;
value uniform 1e-06;
}

The outlet should be of type zeroGradient, which means that it should be changed to

outlet
{

type zeroGradient;
X

At the wing the turbulence is in theory zero, but for numerical stability we will avoid this and just
set it to something very small. Therefore add the following lines to specify the wing

wing
{

type fixedValue;

value uniform 1le-10; // Avoid =zero
}

Proceed by removing the frontAndBack patch boundary conditions and add the same lines as for
the previous quantities to achieve cyclic boundary conditions over the front and back patch. Save
and close the file.

5.3.4 Turbulent frequency

There is no file for the turbulent frequency, instead we will change the name of the file 0/nuTilda.
Begin by changing it’s name

mv 0/nuTilda 0/omega

The first modification that will be done to the file is to change the name of the object to omega,
giving the following

object omega;

Proceed by changing the unit of the field to 1/s and the initial value of the field to 1 according to

dimensions [0O -1 00 0 07;

internalField uniform 1;

After this the boundary condition at the inlet, top and bottom should be changed to look like

inlet
{
type fixedValue;
value uniform 1;
}

The outlet should be zeroGradient. Therefore, change this boundary condition to the same as for
the turbulent kinetic energy. After this, the wing will be treated with a special wall function for the
turbulent frequency. To use this add the following lines for the wing patch
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wing
{
type omegaWallFunction;
Cmu 0.09;
kappa 0.41;
E 9.8;
betal 0.075;
value uniform 1000;
}

Finally, remove the boundary condition for frontAndBack and add the cyclic boundary conditions
in accordance with before. Save and close the file.

5.3.5 Turbulent/Sub grid scale viscosity

The turbulent/sub grid scale viscosity conditions is specified in the file 0/nuSgs. Begin by setting
the initial value to 1e-6, corresponding to k/w.

internalField uniform 1le-6;

Continue by changing the boundary conditions at the inlet, outlet, top and bottom to calculated
according to

inlet
{
type calculated;
value uniform O;
}

At the wing, no turbulence is present, therefore add the following lines to prescribe the boundary
condition at the wing

wing
{
type fixedValue;
value uniform O;
}

As always, finish by removing the frontAndBack patch boundary conditions and add those to achieve
cyclic conditions. After this save and close the file.

5.3.6 LDES/LDDES

A field governing mesh refinement is also needed. It is called LDES or LDDES dependent on if the
DES or DDES model is used as described earlier. In this case, it is assumed that the DDES model
is used and hence the field LDDES will be added. To achieve this copy the nuSgs file, then change
the name and dimension of the object according to

cp 0/nuSgs 0/LDDES
sed -i s/nuSgs/LDDES/g 0/LDDES
sed -i s/"0 2 -1"/"0 O O"/g O/LDDES

After opening the file change the boundary condition at the inlet, outlet, top and bottom to
zeroGradient to achieve
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inlet
{

type zeroGradient;
b

The zeroGradient condition is used because at a patch, there is no definition of the cell size A.
Hence, it is better to simply assume that it varies little in the normal direction to the patch instead.
Also, this field is not used by the turbulence model as discussed earlier, so it’s value at a boundary
is not important in that sense. At the wing, we however know that this field asymptotically must go
to zero, due to that the turbulent kinetic energy does. Hence, it is safe to keep the same boundary
conditions as for the turbulent/sub grid scale viscosity.

5.4 The dictionaries

The next step is to set up the necessary dictionaries. The dictionaries that will modified are
controlDict, fvSolution, fvSchemes, LESProperties and dynamicMeshDict.

5.4.1 controlDict

We start by changing the name of the solver according to

sed -i s/pisoFoam/pimpleDyMFoam/g system/controlDict

The end time must also be modified. Before enabling mesh refinement, the flow must develop
properly since we are dealing with a transient simulation. The wing is 1 m long the the flow is
passing it at 1 m/s, so the end time will be chosen to 3 s in order to let the flow pass the wing
several times. The change is done according to

sed -i s/0.1/3/g system/controlDict

Further, change the At value to 1-1073

sed -i s/1e-05/1e-03/g system/controlDict

The write control should be set to adjustable, since the At value will be governed by the Courant
number, hence do the following change

sed -i s/timeStep/adjustableRunTime/g system/controlDict

The time intervals for which the solver will write out the results will be set next. The reader can of
course choose this as they wish, for now it will be set to 0.2 s according to

sed -i s/100/0.2/g system/controlDict

Let’s also change the purgeWrite option to only keep the latest solutions written and overwrite
older. Here, this number will be changed to 5

sed -i s/"purgeWrite 0"/"purgeWrite 5"/g system/controlDict

To save some space on the disc, especially in case of a 3D simulation in which the amount cells
quickly become very large, write compression will be enabled

sed -i s/off/compressed/g system/controlDict

After this, open the file in an editor and add the following lines before the functions
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adjustTimeStep yes;
maxCo 0.4;

libs ("libmyIncompressibleLESModels.so");

This will enable run-time At adjustment based on the Courant number, and also include the k& — w
SST DES turbulence model. Furthermore, since the specified functions in the controlDict will not
be used, they can be commented away as well. Finish by saving and closing the file.

5.4.2 fvSolution

Since the copied case uses the pisoFoam solver and solves for other turbulent quantities this dictio-
nary needs some changes as well. Start by changing the name of the solver

sed -i s/PISO/PIMPLE/g system/fvSolution

Also change the name of the turbulent quantity used according to

sed -i s/nuTilda/omega/g system/fvSolution

After this, open the file in an editor. To begin with, change the PIMPLE sub dictionary to include
the following

nOuterCorrectors 1;

nCorrectors 2;
nNonOrthogonalCorrectors 2;
pRefCell 0;
pRefValue 0;
correctPhi yes;

These numbers can not completely be justified by the author. However, some general ideas to why
these settings are applied can be given. First, setting the amount of outer correctors to 1 means that
the solver will effectively operate in PISO mode, since the amount of times the whole PISO loop will
be done are only 1. This seems reasonable considering that the Courant number is chosen small.
Most tutorials available on PISO and PIMPLE use two correctors specified on the second line, and
hence it was simply kept this way. The third line is included for two reasons. First, since the mesh
is very skewed, adding non orthogonal correctors will help with the "non orthogonal” cells present.
Without it, continuity will run the risk of not being properly satisfied, which of course affect the
entire solution negatively. Also, it will be used to correct for continuity after mesh refinement has
been used, as discussed earlier.
After the specification of the solver used for U, add the following

UFinal

{
solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;

¥

I.e. simply copy the specifications for the U solver and change the keyword to UFinal instead. Do
the same procedure for the quantities k, B and omega as well.

After this, we must define the type of solver that will be used for the pressure corrector equation
entered in correctPhi.H in cases the mesh was refined. This is due to that a separate pressure
corrector equation that solves for the quantity pcorr is used. It may be defined by copying the
definition of the solver for p and renaming it pcorr to achieve

o4




5.4. THE DICTIONARIES CHAPTER 5. SIMULATION WITH MESH REFINEMENT

pcorr

{
solver PCG;
preconditioner DIC;
tolerance 1e-06;
relTol 0.05;

}

When this has been done, the type of solver used for pressure will also be used since the current
solver settings will fail to converge. Therefore, change all the pressure solver settings (p, pFinal
and pcorr) to the following settings instead

solver PCG;

preconditioner

{
preconditioner GAMG ;
tolerance le-5;
relTol 0;
smoother DICGaussSeidel;
nPreeSweeps 0;
nPostSweeps 2;
nFinestSweeps 2;
cacheAgglomeration false;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergelevels 1;

}

tolerance 1e-05;

relTol 0;

maxIlter 100;

The author however chose to keep the relTol to 0.05 for the solution if p, a choice that however
can not be justified.

5.4.3 fvSchemes

Some small changes to the schemes used, as well as addition of a few more necessary definitions of
schemes that are missing will be done. Begin by simply changing the name of the turbulent quantity
used according to

sed -i s/nuTilda/omega/g system/fvSchemes

Furthermore, the Crank Nicholson time integration scheme will be applied, hence perform the fol-
lowing change as well

sed -i s/backward/"CrankNicolson 0.5"/g system/fvSchemes

Next, open the file and add the following Laplacian scheme used in the pressure corrector equation
that will be entered when nNonOrthogonalCorrectors is different from zero

laplacian(rAU,p) Gauss linear corrected;
laplacian(rAU,pcorr) Gauss linear corrected;

Finally, add the following line in the sub dictionary called fluxRequired

pcorr ;

Save and close the file.
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5.4.4 LESProperties

To begin with, change the name of the turbulence model applied according to

sed -i s/oneEqEddy/kOmegaSSTDESRefine/g constant/LESProperties

After this, the way the local grid size is calculated needs to be changed. From the theory, we known
that A = max{Axz1, Az, Azs}, and this should be specified in LESProperties. After opening the
file in an editor, change the type of delta to maxDeltaxyz to obtain

delta maxDeltaxyz;

Also, change the name of the sub dictionary for the cubeRootVolCoeffs to maxDeltaxyzCoeffs.
Finally, a sub dictionary specifying all the constants that are used in the turbulence model will be
supplied. This is not necessary, the values suggested in the literature are already set by default, but
it is always good to have the opportunity to easily change them. Therefore, add the following lines
in the dictionary

kOmegaSSTDESRefineCoeffs

{
gammal 0.5532;
gamma?2 0.4403;
betal 0.075;
beta2 0.0828;
alphakK1 0.85034;
alphakK2 1.0;
alphaOmegal 0.5;
alphaOmega?2 0.85616;
betaStar 0.09;
al 0.31;
CDES 0.61;

by

This concludes the modifications of LESProperties, save and close the file.

5.4.5 dynamicMeshDict

Finally, the dynamicMeshDict needs to be adapted for this case. Since the solver will be started
without enabling mesh refinement, set the refineInterval to 0 according to

sed -i s/"refineInterval 1"/"refinelInterval 0"/g \
constant/dynamicMeshDict

The name of the field that govern the refinement needs to be changed as well.

sed -i s/alphal/LDDES/g constant/dynamicMeshDict

Note that dependent on if the DES or DDES model is used, the field changes name. Since the
LDES/LDDES term must become larger than 1 in order for the DES features to kick in, it is
reasonable to refine the mesh in regions where the term is close to being 1. This should effectively
increase the term here due to a smaller A and hence allow for more turbulence to be resolved.
The following changes will therefore be made to the lowerRefineLevel and upperRefinelLevel
respectively.

sed -i s/0.001/0.85/g constant/dynamicMeshDict
sed -i 8/0.999/0.95/g constant/dynamicMeshDict
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The unrefinelevel value is defined such that a cell will be unrefined if the field is below this
value. This is typically what you want in a simulation where the mesh is used to control the errors.
In such cases, when the error is sufficiently small, the mesh can be unrefined in that region to
save computational power and then refined in regions where the error is larger. In the case of mesh
refinement however, the situation is the opposite. In this case it would be better to be able to control
how much turbulence that is resolved by setting an upper limit to how large LDES/LDDES can
become. Hence, if it becomes too large, the mesh should be unrefined in order to avoid resolving too
much turbulence. As it is now this is not possible unless modifications to the dynamicRefineFvMesh
class are made. So for now, we will just suppress unrefinement by putting unrefineLevel to 0

sed -1 s/10/0/g constant/dynamicMeshDict

The maximum amount of cells, maxCells, must also be specified. The current mesh, before any
extrusion to 3D contains 26950 cells, so an upper limit based on this number should be chosen. Here
it will be chosen to 40000 for the 2D case

sed -i s/200000/40000/g constant/dynamicMeshDict

Finally, the remapping of the velocities/fluxes after refinement needs to be specified. To do this,
open the file in an editor and change the correctFluxes to the following

(
(phi U)
(phi_0 U_0)
(phi_0_0 U_0_0)
(ddto (phi) ddt0(U))
);

The underscore followed by 0 denotes the old time step, which is used for integrating in time by
some schemes. To be on the safe side, two steps back in time has been supplied, but it may happen
that the solver never uses these. The last part called ddt0() is for the Crank Nicholson algorithm.

5.5 Running the case

To begin with, the case will be run for 3 s without mesh refinement to allow the flow to stabilize.
After this, the refinement will be enabled and the simulation will be started from the 3 s solution.
The case files set up according to above, as well as the solution at time 3 s has been provided with
this work.

5.5.1 Without refinement

The case is now set up to run in PISO mode for 3 s without mesh refinement. To start the simulation,
type

pimpleDyMFoam > logl &

This will start the solver in the background and put the output in a log file. The simulations take
time, especially in 3D. A 2D simulation will at least end up on taking a couple of hours, dependent
on mesh quality, number of correctors in PIMPLE loop and mesh size.

Simulation results This work has not been concerned with evaluating the performance of the
new turbulence model or the effect of mesh refinement to any larger extent. To do this, a much better
mesh and deeper investigation into the numerical schemes is needed in order to get significant results
to evaluate. But to give an indication of how the model performs and behaves, some simulation
results are presented below.
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Figure 5.1: Velocity and pressure for NACA 4412 Airfoil, Rey = 1-10°.
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Figure 5.2: Turbulent kinetic energy and Lpprs field for NACA 4412 Airfoil, Rer, = 1 - 10°.

5.5.2 Enabling refinement

After the flow has stabilized, its time to enable mesh refinement. Do this by changing the parameter
refineInterval from 0 to 10 according to

sed -i s/"refineInterval O0"/"refineInterval 10"/g \
constant/dynamicMeshDict

Also change the start and end time of the simulation according to

sed -i s/"startFrom startTime"/"startFrom latestTime"/g \
system/controlDict

sed -i s/"endTime 3"/"endTime 4" /g \
system/controlDict

After this is done, start the solver again by typing

pimpleDyMFoam > log2 &

Simulation Results The results after mesh refinement are shown below
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Figure 5.3: Velocity and pressure for NACA 4412 Airfoil, Rer = 1-10°, after refinement.

LDDES
34.99591

30

3
2.392325
’:2
20
1
t E:]O

 §
.

(a) Turbulent kinetic energy, k. (b) LppEs-

Figure 5.4: Turbulent kinetic energy and Lppgs field for NACA 4412 Airfoil, Re;, = 1- 1057 after refinement.
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Figure 5.5: Mesh before and after refinement.
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Chapter 6

Conclusions

This work has involved a variety of topics within the scope of CFD and OpenFOAM, both with
respect to theory, performing simulations and implementation of code.

To begin with the DES formulation of the k¥ — w SST model was presented with the aim of
describing how it works. The conclusion was that the model is designed to resolve turbulence if the
mesh allows in what is known as the LES mode and otherwise model all the turbulence using the
original URANS model. Also from the theory it was noted that OpenFOAM includes the special wall
functions used for the turbulent frequency which made it possible to easily assign proper boundary
conditions to w. The simulation was further set to be an airfoil traveling through a still fluid. This
setting is not realistic in real life applications in which unsteadiness in the air is likely to be present,
but allowed for a convenient and fairly easy case to set up. The aim of this project was also not to
evaluate the model.

The description of the OpenFOAM implementation regarded a turbulence model, mesh refine-
ment and a dynamic mesh solver. The turbulence model implementations in OpenFOAM are a
little bit tricky to understand at first. However, after some training it is fairly easy to understand
both how to modify them as well as to see what equations are actually set up and solved. This is a
great advantage with OpenFOAM, since it allows the user to have full control over the turbulence
modeling in contrast to closed code software. The implementation of the mesh refinement routine
in OpenFOAM appears to be very well implemented and works well even though it appears to not
be completely finished. The main drawback that was found was that the cells selected for mesh
refinement, in cases where not all candidate cells could be refined, are not selected based on how
large the governing field is in the cells. I.e., no intelligent selection appears to be performed to refine
cells that are ”in greater need” for refinement. As noted for the solver, it is not originally designed
for refining meshes, but rather for moving meshes. It does however work for reining meshes but
could use some modifications to be better suited.

The implementation of the new turbulence model proved to be convenient. Only the DDES
model was enabled but the change between DES and DDES is easily made. In general, with only
limited programming knowledge, it is possible to change the way a turbulence model works, which
of course is a great feature.

The simulations proved that the turbulence model performs as intended, but did not try to do
any validation work. It was found that the mesh quality is critical when it comes to to obtaining
good results for DES simulations. A fair amount of work had to be put into obtaining meshes that
produced good results. In particular, three key aspects of the mesh was found critical. First of all
there is the skewness of the mesh. It was found that a very skewed mesh introduced oscillations in
the flow field, which could only partly be avoided with more non-orthogonal correctors in the solver.
Second there is the mesh uniformity. Since the mesh size directly control the source term in the k
equation, a smoothly changing mesh size is critical. If the mesh changes a lot in size over a small
distance, so does the source term, and this does not favor a smooth transition between URANS and
LES mode. Last there is the resolution near walls. The DDES model includes a limiter to avoid
fine near-wall mesh resolution from triggering LES here. However,this protector is not perfect and
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it could still happen that the model starts to resolve turbulence here if the mesh is sufficiently fine.
In cases with the DES model, this effect is expected to be even more severe. Therefore, near wall
mesh resolution is critical in using the DES model properly and as intended. Finally, as noted, the
proper choice of solvers for different quantities, in particular pressure, was found important for fast
convergence.
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Appendix A

MATLAB program to generate
airfoil geometry

The Fortran routine that is used to generate the blockMeshDict can take in an arbitrary airfoil
geometry in a file called Airfoil.data. A MATLAB program was therefore written that generates
an Airfoil.data file based on the NACA four digit standard for cambered airfoils. The program
will generate a cross section shape of the airfoil as a set of discrete points constituting the surface.
To give better resolution, the points lie closet together towards the leading edge, where the curvature
generally is larger.

The program also plots the final airfoil shape together with the NACA number to allow the user
to inspect the shape prior to creating the blockMeshDict. There is also an option to plot the airfoil
shape at various angles of attack to see how it looks.

The following parameters are possible to adjust in the program

Table A.1: Parameters that can be adjusted when generating airfoil

Parameter | Description

m Maximum camber

P Location of maximum camber as fraction of length
t Maximum thickness

c Chord length (length of airfoil)

These parameters describe the shape of the airfoil. A description of how this is done is easily
found on the internet and will not be presented here.
A list of the MATLAB files provided are listed in the next table

Table A.2: MATLAB files necessary to generate airfoil shape.

File Description

NACAXxxXX.m Main program. Sets parameters and plot results

y-c_calc.m Calculate the asymmetric camber line of the airfoil (mean line)
y-t_calc.m Calculate the thickness of the airfoil

dy_c_dx_calc.m | Calculates the gradient, or normal, to the camber line
profile_calc.m | Calculates the final profile
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Appendix B

Extension of blockMeshDict for 3D
simulation

The blockMeshDict generated by the Fortran routine is for a 2D geometry, i.e. the front and
back of the geometry is empty. The author also found that the orientation of the vertices defin-
ing the patches of the boundary was done in the counter clockwise, instead of clockwise direction.
Therefore, the part of the blockMeshDict defining the boundary was first rewritten to allow for 2D
simulations with correctly defined boundaries. It was also rewritten further to allow for 2D simula-
tions using cyclic boundary conditions to connect the front and back of the domain. The changes
to the boundary definition can be found in the files AddToBlockMeshDictClockOrient.data and
AddToBlockMeshDictClockOrientCyclic.data respectively. To use these changes, first generate a
blockMeshDict using the Fortran routine, and then substitute the part of it named patches(...);
for the content of the file.
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